肝臓部分切除領域推定における効率的探索手法の評価

Evaluation of efficient search method for partial resection area estimation in liver surgery

○小林正宗*,小林康浩*,張山昌論**,下田貢***

○ Masamune Kobayashi*, Yasuhiro Kobayashi*, Masanori Hariyama**,Mitsugi Shimoda***

*小山工業高等専門学校, **東北大学, ***東京医科大学茨城医療センター 消化器外科

*National Institute of Technology (KOSEN), Oyama College, **Tohoku University, ***Department of Gastroenterological Surgery, Tokyo Medical University,

キーワード: 肝切除 (liver resection), 医用画像 (medical image), 楕円放物面 (ellipsoid paraboloid), 勾配 法 (gradient method), 効率的探索 (efficient search),

連絡先: 〒 323-0806 小山市中久喜 771 小山工業高等専門学校 電気電子創造工学科 知能集積システム研究室

小林正宗, Tel.: (0285)20-2100, Fax.: (0285)20-2885, E-mail: s2021se04@oyama.kosen-ac.jp

1. はじめに

肝臓外科手術において部分切除を行う場合に は, 腫瘍からある程度余裕を持たせた領域を切 除することが一般的である. 切除領域は医師の 裁量に任されており, 腫瘍に栄養を与えている 血管を含んだ領域(支配領域)を完全に取り切 れない可能性があった.先行研究として,腫瘍 と門脈の位置関係から支配領域を推定する手法 が提案されている^{1,2,3)}.われわれはこの推定 領域を含む楕円放物面で部分切除することを想 定し, 切除体積が最小となる切除領域推定手法 について研究を行っている^{4,5)}.しかしながら. 全探索を前提とした場合,現状で10時間~1日 程度の時間を必要とする.本研究では、切除領域 の位置および形状に基づいて,探索の基準とな る楕円放物面の初期形状を設定したうえで効率 的に切除面を推定する手法を提案し評価を行う.

2. 肝腫瘍の切除方法

現在の腫瘍の切除方法は,部分切除と系統的 切除に分類される.肝臓内の血管は中心から枝 分かれしており,それぞれの血管が担当する領 域によって区域が分類されている.この区域ご とに肝臓を切除するやり方が系統的切除である. 腫瘍に栄養を与えている血管を含んだ領域(支 配領域)を完全に切除することで切除領域を明 確にして再発のリスクを抑えることができると 考えられる.

本研究で対象としているのは部分切除である. 部分切除は腫瘍から1~2cm 程度余裕をもたせ て切除する手法であり,腫瘍が小さい場合に有 効である.この手法では,腫瘍と切除曲面の距 離が医師の裁量に任されている.また,切除領 域に明確な指標がないため再発のリスクが高く なる可能性があった.再発のリスクを低くする

Fig. 1 支配領域

ために,腫瘍と門脈の位置関係から支配領域を 求める(図1).支配領域から推定した切除領域 に対して部分切除を行う.

3. 従来の探索手法

先行研究では,部分切除の場合の切除面は、 「スプーンですくうような曲線」が想定されて いる⁶⁾.そのため先行研究では,切除面として 楕円放物面が用いられている.楕円放物面の表 現には,以下の合計8個のパラメータが必要と なる.

- 回転角度(ロール・ピッチ・ヨー):α,β,γ
- 平行移動 :*x*₀, *y*₀, *z*₀
- 焦点距離 :*A_y*, *A_z*

ただし,回転は各軸の回転角度,平行移動は原 点から頂点までの距離,焦点距離は放物面の広 がり度合いを表す.回転を含まない楕円放物面 は,一般的に式1で表現できる.

$$x - x_0 = \frac{(y - y_0)^2}{A_y} - \frac{(z - z_0)^2}{A_z} \qquad (1)$$

ロール・ピッチ・ヨーは図形を X, Y, Z の順番 に軸を回転させる 3 次元回転の手法である.回 転前の座標を (X,Y,Z) としたとき回転後の座標 (X',Y',Z') は式 2 で表現できる.

Fig. 2 従来手法フローチャート

$\begin{bmatrix} X' \\ Y' \\ Z' \end{bmatrix} =$	$\begin{bmatrix} \cos \gamma \\ \sin \gamma \\ 0 \end{bmatrix}$	$-\sin\gamma \\ \cos\gamma \\ 0$	$\begin{bmatrix} 0\\0\\1 \end{bmatrix}$	$\begin{bmatrix} \cos \beta \\ 0 \\ -\sin \beta \end{bmatrix}$	$\begin{array}{c} 0 \\ 1 \\ 0 \end{array}$	$\frac{\sin\beta}{0}\\\cos\beta$	(\mathbf{n})
	[1	0	5]	$\begin{bmatrix} X \end{bmatrix}$			(2)
	0 co	$s \alpha - s$	$\operatorname{in} \alpha$	Y			
	0 si	nα co	$s\alpha$	Z			

ロールは放物面の軸での回転を表し,ピッチ とヨーで軸の傾きを表している.焦点距離はY 軸,Z軸方向それぞれの広がり度合いを表してい る.焦点距離が大きいほど放物面は広がる.楕 円放物面による最適な部分切除面を求めること は,最適化問題として扱うことができる.変数 は楕円放物面の形状を決定する8個のパラメー タであり,目的関数は楕円放物面による肝臓切 除体積の最小化である.このときの制約は,切 除領域を楕円放物面によってすべて切除するこ と(以下,包含制約と呼ぶ.)である.

図2に示す従来手法では、8個の変数のすべ ての組合せを総当たりで最適解を探索していた. ある探索範囲内のすべてのパラメータの組合せ に対して、切除体積が最も少なくなるパラメー タを求める探索方法である.しかしながら、全 探索は組み合わせ数に比例して探索時間がかか

Table I 探察ハフメータ設定					
パラメータ	範囲	間隔	組合せ数		
α	0~180[°]	5[°]	36		
eta,γ	0∼360[°]	5[°]	72^{2}		
x_0, y_0, z_0	$-50{\sim}50[\text{pix}]$	5[pix]	20^{3}		
A_y, A_z $\frac{1}{70}, \frac{1}{60}, \frac{1}{50}, \frac{1}{40}, \frac{1}{30}$			5^{2}		

る. また, 組み合わせ数は探索の精度を高くし ようとすると著しく増大する.表1に具体的な 全探索のパラメータの設定を示す.この場合,総 組合せ数が 37,324,800,000 通りになる.

従来手法では処理時間削減のため、以下の改 善を行っている. 従来探索手法では切除体積を 計算する処理に時間がかかっていることが分かっ ていたため、あるパラメータの組合せにおいて 明らかに最適解ではないことが分かった時点で 切除体積計算処理を省略するようにした. 省略 条件は以下の2条件である.

- 包含制約を満たさない
- 切除体積計算処理中に,探索途中におけ る切除体積最小値(暫定解)を超える

以上の処理を組み込んだうえで探索時間は平均 36 時間となっている.

4. 本提案の探索手法

提案手法では、基準となる楕円放物面の初期 形状を求めたうえで、形状を変化させながらよ り小さな切除体積となるように効率的に探索を 行う.総当たり探索に比べて探索範囲を限定で きるため, 計算時間が短くなると考えられる. 探 索時間の目標値は実用性を考慮して1時間以内 とする.

図3に提案手法の処理概要を示す.処理は大 きく初期形状設定と探索処理に分類される.

初期形状は、切除領域と肝臓領域の位置関係 から決定される. 楕円放物面の形状は, 頂点が 肝臓内部に位置し、かつ肝臓表面に向かって開

Fig. 3 提案手法フローチャート

いていくものが切除面としては望ましいことが 経験的に分かっている.図4は初期形状の設定 方法を示している. 図4の①は楕円放物面の頂 点を示しており,初期形状設定では肝臓の重心 に設定する.頂点座標は楕円放物面の平行移動 量(x₀, y₀, z₀)に相当する.次に,切除領域と 肝臓の重心を結ぶ軸を放物面の X 軸と設定する (図 4②). ここから回転角度 (*α*, *β*, *γ*) を算出す る. 焦点距離は, 平行移動量と回転角度から, 切 除領域を包含する条件下で線形計画法により求 められる (図 4③).

初期設定では、頂点を肝臓重心に設定するこ とを基本としているが, 肝臓重心が除領域内部 に含まれている場合は包含制約を満たさないた め頂点座標を変更する必要がある. その場合は 以下の手順で頂点座標を変更する. 図5の例で は、肝臓の重心点 L₀ に頂点が設定されたが、切 除領域に L₀ が含まれているため包含制約を満 たさない. そこで, 切除領域の重心点 R から肝

Fig. 5 頂点座標の移動

臓の重心方向に向かって,頂点座標を切除領域 外部に出るまで移動を繰り返す.移動距離は肝 臓と切除領域の重心間距離を基準とする.

図3の探索処理では,初期形状のパラメータ を基準として,パラメータに変更を加えながら より良い解を探索する.8個のパラメータのう ち、焦点距離については平行移動量と回転角度 から線形計画法によって求めることができるの で,探索時に変更するパラメータは6個である. 平行移動量と回転角度の6パラメータについて, 適切量増減させた12組のパラメータの組み合 わせを候補として切除体積計算を行い,最小値 と暫定解との比較を行い更新処理を行う.以降 同様にして,暫定解のパラメータを基準として, 候補パラメータの中で切除体積最小値の更新を 繰り返す.

5. 処理結果

15 種類の画像に対して探索結果の評価を行っ た.各画像では,肝臓領域および切除領域情報 があらかじめ与えられているものとする.提案 手法では,6個のパラメータの変化量について固 定と可変の2手法で評価を行った.理由は,変化 量を固定にした際に,局所解に陥ることがあっ たためである.変化量固定の場合は,平行移動 の変化量を20,回転角度の変化量を1として探 索を行った.

変化量可変の場合は,変化量の初期値を設定 したうえで,探索時の暫定解更新が行われなく なったタイミングで段階的に変化量を小さくす る.回転角度の変化量は初期値を6とし,最小 値1まで段階的に1ずつ減少する.平行移動の 変化量は,回転角度の変化量*n*をもとに2^{*n*-1}と 設定した.具体的には,初期値は32,最小値は 1となる.

評価環境は以下のとおりである.

- OS:Windows 10 Home
- CPU: 11th Gen Intel(R) Core(TM) i7-11700 @ 2.50GHz 2.50 GHz
- メモリ:16.0 GB

変化量固定の場合の切除体積と探索時間の結 果を表2,3にそれぞれ示す.表2に示す従来手 法との体積比では,平均値が約101%であり,大 きな違いは生じていないことがわかる.しかし ながら,画像12の場合に体積比が146%と大き い.これは勾配法の探索で局所解に陥っている ためと考えられる.表3に示す探索時間比を見 ると,従来手法と比較して12%程度と探索時間 を大幅に削減できていることが分かる.探索時 間の平均値も325秒となっており,実務で使用 可能なものとなっている.画像4や6のように, 従来手法の時点で探索時間が短いものについて も,時間短縮ができている.

Table 2	1 切除体	積比較(変	化量固定)
面偽	切除体	体積比(%)	
画家	従来手法	提案手法	(提案/従来)
1	43 58 43	439998	100.95
2	124225	127379	102.54
3	1071554	1071554	100.00
4	122152	103762	84.94
5	699578	707740	101.17
6	1215780	1214885	99.93
7	666176	660530	99.15
8	122054	113042	92.62
9	671897	661030	98.38
10	162412	167634	103.22
11	348847	339859	97.42
12	47837	70138	146.62
13	195458	207898	106.36
14	396170	424248	107.09
15	191160	167349	87.54

変化量可変の場合の切除体積と探索時間の結 果と先行研究との比較を表4.5にそれぞれ示す. 表4に示す従来手法との体積比では,平均値が 約99%であり、すべての画像で従来手法とほぼ 等しい解を得ることが出来た. 勾配法の変化量 を可変にすることで,局所解に陥ることが少な くなったと判断できる.また,表5の結果から, 測定時間比の平均が7%と小さくなったことが わかる.実際に得られた切除面の例を図6に示 す.図6(a)の従来手法で得られた切除面は、支 配領域を楕円放物面の側面で切除していること が分かる.これは従来手法における焦点距離の 値の範囲(1/70~1/30)が適したものでなかっ たため、想定外の解が得られたと考えられる. 一 方で提案手法では,支配領域を楕円放物面の頂 点から切除している.本研究は、スプーンです くうような曲面を想定しているため、想定通り の形状であるといえる.

6. おわりに

本研究では、肝臓部分切除領域推定に対する 効率的な探索手法の提案および評価を行った.探 索時間については、先行研究に対して平均90勾 配法で探索する際、平行移動と焦点距離の変化 量を変えることで、切除体積の精度と探索時間

ŗ	Table 3	探索時	間比較(変	化量固定)
	面偽	探索時	探索時間(s)	
	画琢	従来手法	提案手法	(提案/従来)
	1	922681	565	0.06
	2	219411	202	0.09
	3	151	67	44.13
	4	1648	360	21.82
	5	56046	226	0.40
	6	1287	835	64.89
	7	31897	400	1.25
	8	16180	338	2.09
	9	2274	384	16.87
	10	3519	242	6.88
	11	44521	251	0.56
	12	6310	291	4.61
	13	496230	139	0.03
	14	180241	258	0.14
	15	1922	317	16.50

Table 4	L 切除体	積比較(変	化量可変)
面偽	切除体	体積比(%)	
画家	従来手法	提案手法	(提案/従来)
1	435843	446881	102.53
2	124225	127971	103.02
3	1071554	1071554	100.00
4	122152	106789	87.42
5	699578	721414	103.12
6	1215780	1217200	100.12
7	666176	644030	96.68
8	122054	109119	89.40
9	671897	661030	98.38
10	162412	156543	96.39
11	348847	342374	98.14
12	47837	51422	107.49
13	195458	209311	107.09
14	396170	387743	97.87
15	191160	182532	95.49

Table 5	探索時間比較	(変化量可変)

雨梅	探索時	時間比(%)	
画像	従来手法	提案手法	(提案/従来)
1	922681	283	0.03
2	219411	236	0.11
3	151	79	52.38
4	1648	160	9.69
5	56046	172	0.31
6	1287	218	16.94
7	31897	162	0.51
8	16180	213	1.32
9	2274	159	7.01
10	3519	93	2.65
11	44521	140	0.31
12	6310	562	8.91
13	496230	112	0.02
14	180241	125	0.07
15	1922	103	5.38

(a) 従来手法

(b) 提案手法

Fig. 6 切除面の比較

が変わってくる.今後、適切な変化量を設定で きるように調査を進めていく予定である.

参考文献

- 1) 岡田萌, 張山昌論, 亀山充隆, 下田貢, 小林康浩: 高精度血管抽出に基づく門脈支配領域推定, 電 気関係学会東北支部連合大会, Oct (2012)
- 岡田萌, 張山昌論, 亀山充隆, 下田貢: 腫瘍領域 情報に基づく肝臓切除容量最小化のための門脈 切除点計算, 計測自動制御学会東北支部第279 回研究集会, 279-3(2013)
- 3) 鈴木健明,張山昌論,亀山充隆,下田貢,窪田敬一: 肝臓手術における実用的な制約条件を考慮した最適切除領域推定,計測自動制御学会東北支部第295回研究集会,295-1(2015)
- 4)小野翔平:平成29年度小山高専卒業論文「肝臓外科手術における最適部分切除領域推定に関する研究」
- 5) 麦倉柊太: 平成 30 年度小山高専卒業論文「凸 多面体近似による肝臓部分切除領域推定の探索 効率化に関する研究」
- 6) 高本健史ほか: えぐる肝切除の default 設定(非 解剖学的肝切除の標準化の提案),第7回肝癌 治療シミュレーション研究会(2012)