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1. Introduction

Principal Component Analysis (PCA) 26) and

Linear Discriminant Analysis (LDA) 8) are two

statistical learning algorithms using coordinate

transformation for dimension reduction of high-

dimensional data. They are applied widely

in feature extraction, data classification, and

clustering problems.

PCA is an unsupervised learning method,

pursuing some projection directions with the

maximum sum of the total variance of pro-

jected data. It is useful for feature mining

and extraction by reducing higher dimensional

data to lower dimensional data 1). LDA is

a supervised learning method with the objec-

tive that finding the projection direction with

the maximum distance of projections of class

means and the minimum distance between the

projections of sample data in each class and the

projections of corresponding class mean 12).

LDA has good performance in data classifica-

tion and clustering problems.

PCA and LDA are used to solve linear prob-

lems in low-dimensional space. Kernel meth-

ods 10) can be used to increase data dimen-

sion, and transform the nonlinear models in

low dimensional space to linear ones in high di-

mensional space. It simplifies the complexity

of problems using the transformation. There

is research on kernel PCA 21), referred to as

KPCA in the following, and Generalized Dis-

criminant Analysis (GDA) 3). These researches

perform PCA and LDA in high dimensional

space by using kernel methods to handle non-

linear problems 17).

KPCA has many extensions of its techniques,
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algorithms, and applications. For example, sparse

kernel PCA 23), robust kernel PCA 18), incre-

mental kernel PCA 4), adaptive kernel PCA 6),

and streaming kernel PCA 9), etc. KPCA has

been applied in kinds of scenes, including face

recognition 14), image modling 13), fault detac-

tion 5), and geostatistics 20), etc. There are

also many pieces of research on GDA, which

apply GDA with different approaches and ex-

tend GDA to multiple situations. For instance,

GDA based on distance 2), GDA of matrix

exponential approach 29), modified GDA pre-

venting eigenvalue degenerating 30), as well as

GDA with generalized singular value composi-

tion 11), etc. In addition, the applications of

GDA to tree-structured classification 15), fea-

ture extraction with DNN 22), face recogni-

tion 16), and under-sampled problems 27, 28),

etc., have been hot topics for a long time.

Pei proposed a framework of data analysis

methods called Linear Principal Component

Discriminant Analysis (LPCDA) using the same

characteristics of PCA and LDA 19). It has

the advantages of both supervised and unsu-

pervised learning methods. In this paper, we

extend LPCDA to solve nonlinear problems in

high dimensional space using kernel methods.

It can be used for both classification and clus-

tering problems, so we refer to it as a series

of semi-supervised learning methods. We pro-

pose a framework of data analysis methods for

nonlinear problems in high dimensional space

by combining three objectives of KPCA and

GDA as follows,

1) pursuing projection vectors of the maxi-

mum total variance of projected data in

feature space;

2) pursuing projection vectors of maximum

sum of distances between projected class

means in feature space;

3) pursuing projection vectors of minimum

sum of distances between projected class

data in each class and the corresponding

projected class mean in feature space.

It is referred to as Kernelized Linear Principal

Component Discriminant Analysis (KLPCDA).

The implementation of kernel extension in LPC-

DA and the presence of varieties of data anal-

ysis methods in high dimensional space is the

originality of this work.

The following of this paper is organized as

below. We illustrate the theoretical implemen-

tation of our proposed KLPCDA in the sec-

tion ”Kernelized Linear Principal Component

Discriminant Analysis”. We show our exper-

iment and evaluation in the section ”Evalua-

tion”. The analysis and discussion of evalu-

ation results and the problems that remained

are presented in the next section. Finally, we

conclude the whole work and present the po-

tential study subjects.

2. Kernelized Linear Principal

Component Discriminant Anal-

ysis

A series of data analysis methods called Lin-

ear Principal Component Discriminant Anal-

ysis, which is a uniform framework based on

Principal Component Analysis and Linear Dis-

criminant Analysis 19), was proposed, as shown

in Table 1. In this work, we establish the kernel

implementation of proposed methods in Linear

Principal Component Discriminant Analysis,

by using the kernel trick. It pursues a pro-

jected direction v in feature space H and sat-
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isfies: (a) with the maximum total variance of

projected samples 21); (b) with the maximum

sum of the distance of the projected group’s

center points 3); and (c) with minimum sum of

the inner variance of the projected groups 3).

Given n training samples of column vectors

x1, x2, · · · , xn ∈ Rd in original space.

Given n =
L∑
i=1

ni training samples f column

vectors with labels 1, · · · , L: x(1)1 , · · · , x(1)n1 , · · · ,
x
(i)
j , · · · , x(L)nL in original space, where x

(i)
j ∈

Rd, i ∈ [1, L], j ∈ [1, ni] is the j-th sample

in class i. ni and L are the number of i-th

class and total labels, respectively. They are

mapped into a feature space and referred re-

spectively as XT =
[
ϕ(x1), ϕ(x2), · · · , ϕ(xn)

]
,

andXT =
[
ϕ(x

(1)
1 ), · · · , ϕ(x(1)n1 ), · · · , ϕ(x

(i)
j ), · · · ,

ϕ(x
(L)
nL )

]
.

The objective (a) is presented by Eq. (1).

The objective (b) is presented by Eq. (2) and

(3), and (c) is presented by Eq. (4) and (5).

In these equations, mi,mj and m represent the

means of the projections of class i, j and all

samples, respectively. mi and m represent the

means of class i and all samples. These objec-

tives are all implemented in the feature space.

Baudat etc. didn’t consider each group’s cen-

ter in objective (c) 3). We consider it and pur-

sue the distance between projections of each

group’s samples and this group’s center is the

minimum, as shown in Eq.s (4) and (5).

v = arg max
v∈Rd,||v||=1

σ2 = arg max
v∈Rd,||v||=1

vTCv.

(1)

v = arg max
v∈Rd,||v||=1

1

2

L∑
i=1

L∑
j=1

ni

n

nj

n
(mi −mj)

2

= arg max
v∈Rd,||v||=1

vTSbv.

(2)

Table 1 　 Methods of principal component

discriminant analysis. There are three ob-

jectives in LPCDA 19), i.e., argmax vTCv,

argmax vTSbv, and argmin vTSwv. With the

combinations of these three objectives, there

are seven methods in LPCDA, making up the

proposed uniform framework, containing the

PCA and LDA. This table is adopted from ref-

erence 19).
Method No. target function meaning

1 vTCv+vTSbv
vTSwv

LPCDA: vTCv+vTSbv
vTSwv

2 vTCv + vTSbv LPCDA: vTCv + vTSbv

3 vTSbv
vTSwv

linear discriminant analysis

4 vTCv principal component analysis

5 vTCv
vTSwv

LPCDA: vTCv
vTSwv

6 vTSbv LPCDA: vTSbv

7 vTSwv LPCDA: vTSwv

Sb =

L∑
i=1

ni

n
(mi −m)(mi −m)T . (3)

v = arg min
v∈Rd,|v|=1

L∑
i=1

ni

n

ni∑
l=1

(vTϕ(x
(i)
l )−mi)

2

= arg min
v∈Rd,|v|=1

vTSwv.

(4)

Sw =

L∑
i=1

ni

n

ni∑
l=1

(ϕ(x
(i)
l )−mi)(ϕ(x

(i)
l )−mi)

T .

(5)

We will introduce the theoretical implemen-

tation of kernelizing five out of seven methods

in Table 1, where No.3 and No.4 methods have

been kernelized before, that is kernel PCA and

GDA, respectively. We weight the objectives

(a), (b), and (c) by parameter α, β, and γ, that

is, αvTCv, βvTSbv, γvTSwv, respectively. In

the following deduction, we will transform the

combinations of three objectives to eigenvalue

problems containing matrices C, Sb, Sw by La-

– 3 –



grange multiplier. However, in feature space,

C =
1

n
XTX, Sb = XTBX, Sw = XTWX,

(6)

are unknown, where

B =
1

n
diag(

1

n1
1n1×n1 , · · · ,

1

nL
1nL×nL)−

1

n2
1n×n,

W = diag(P1In1 , · · · , PLInL)

− diag(
1

n
1n1×n1 , · · · ,

1

n
1nL×nL),

can be known 3, 21). 1ni×ni , i ∈ [1, L] are a

ni × ni matrix with all entries 1. In order to

solve the eigenvalue problems, we have to ap-

ply Wanba theory 25)

v = XTα, (7)

and kernel matrix K = XXT to the deduc-

tion 10). Schölkopf etc. 21) implemented cen-

tering in high-dimensional space by computing

centered kernel matrix K̃ from K,

K̃ = K− 1

n
1n×nK− 1

n
K1n×n−

1

n2
1n×nK1n×n,

where 1n×n are a n×nmatrix with all entries 1.

We replace K with the centered K̃ to operate

the centering in practice.

2.1 Method No.1

The target function is v = argmax αvTCv+βvTSbv
γvTSwv

.

To simplify the calculation, we set α, β, and

γ = 1 in the following. We can solve the prob-

lem by the Lagrange multiplier. About the ob-

jective (c), we set it as a constraint ||vTSwv|| =
1 in the following calculation. The objective of

Method No.1 can be presented by v = argmax||vTSwv||=1

vTCv + vTSbv. From Lagrange multiplier, it

can be deduced as follows,

f(v, λ) = vTCv + vTSbv − λ(vTSwv − 1),

∂f

∂v
= 2Cv + 2Sbv − 2λSwv = 0, (8)

∂f

∂λ
= vTSwv − 1 = 0.

From Eq. (8), we obtain

(C + Sb)v = λSwv, (9)

which is a generalized eigenvalue problem. The

objective can be deduced as

v = arg max
||vTSwv||=1

vTCv + vTSbv

= arg max
||vTSwv||=1

λ.

Therefore, the optimal v corresponds to the

maximum eigenvalue λ of Eq. (9). From Eq.

(6), and Wahba Theory Eq. (7), with kernel

matrix K = XXT , the eigenvalue problem (9)

can be dealt as below.

(
1

n
XTX +XTBX)v = λXTWXv,

1

n
XXTXv +XXTBXV = λXXTWXv,

1

n
XXTXXTα+XXTBXXTα = λXXTWXXTα,

(WK)−1(
1

n
K +BK)α = λα. (10)

In Eq. (10), matrices K, W, B, and parame-

ter n are all known. Hence we can solve this

eigenvalue problem and find eigenvalues λ and

eigenvectors α. We suppose ||v|| = 1 for target

v = XTα, so it has to be normalized as

v =
XTα

||XTα||
=

XTα√
αTKα

.
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Suppose there are new data x′, its projections

onto v in a feature space are

vTϕ(x′) =
1√

αTKα
αT



k(x
(1)
1 , x′)
...

k(x
(1)
n1 , x

′)
...

k(x
(L)
1 , x′)
...

k(x
(L)
nL , x′)


.

2.2 Method No.2

The target function of this method is v =

argmaxαvTCv+βvTSbv. With Lagrange mul-

tiplier, it’s objective can be presented as v =

argmaxv∈Rd,||v||=1 v
TCv + vTSbv, and can be

calculated to obtain this eigenvalue problem,

(C + Sb)v = λv. (11)

The objective can be simplified as

v = arg max
v∈Rd,||v||=1

vTCv + vTSbv

= arg max
v∈Rd,||v||=1

λ.

The target v corresponds to the largest λ of

Eq. (11). By applying kernel matrix, Eq. (6),

and Eq. (7), we can transform Eq. (11) and

solve the eigenvalue problem Eq. (12).

(
1

n
XTX +XTBX)v = λv,

(
1

n
K +BK)α = λα. (12)

2.3 Method No.3

Method NO.3 is GDA and its implementa-

tion in feature space using the kernel approach

has been finished in the year 2000 3). While

the authors didn’t handle the centering in fea-

ture space and didn’t take the distance of pro-

jections between class samples and the corre-

sponding class means into consideration, which

is dealt with by us in the following.

The target function is v = argmax βvTSbv
γvTSwv

.

As mentioned in Eq. (5), it contains the class

means. The objective can be presented as v =

argmax||vTSwv||=1 v
TSbv. By Lagrange multi-

plier,

Sbv = λSwv. (13)

With kernel matrix, Eq. (6), and Eq. (7),

we calculate Eq. (13) and obtain the solvable

eigenvalue problem Eq. (14).

XTBXv = λXTWXv,

(WK)−1BKα = λα. (14)

2.4 Method No.4

Method No.4 is kernel PCA and it was im-

plemented in 1996 21). The target function

is v = argmaxαvTCv. By Lagrange multi-

plier, the objective can be presented as v =

argmaxv∈Rd,||v||=1 v
TCv, and be transformed

to the eigenvalue equation Eq. (15)

1

n
XTXv = λv. (15)

From Eq. (6) and (7), and kernel matrix, Eq.

(15) can be deduced a solvable one Eq. (16).

1

n
Kα = λα. (16)

2.5 Method No.5

For this method, the target function is v =

argmax αvTCv
γvTSwv

. From Lagrange multiplier, the

objective can be denoted as v = argmax||vTSwv||=1

vTCv. By further calculation, we obtain

Cv = λSwv. (17)
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Fig. 1　 Projections of seven kernelized data analysis methods on Fisher Iris data set by using

Gaussian kernel with σ = 0.2. The labels 1, 2, 3 correspond to the classes Iris-setosa, Iris-versicolor,

and Iris-virginica, respectively. The X axis is the first principal component, and the Y axis is the

second principal component.

With Eq. (6), kernel matrix, and Wahba Rep-

resenter Theory, we deduce Eq. (17) and ob-

tain the eigenvalue equation (18).

1

n
XTXv = λXTWXv,

1

n
(WK)−1Kα = λα. (18)

We can work out α and λ.

2.6 Method No.6

The target function of this method is v =

argmaxβvTSbv.With the Lagrange multiplier,

we can present and deduce our objective as

v = argmaxv∈Rd,||v||=1 v
TSbv, and the eigen-

value equation

Sbv = λv. (19)

We transform the above eigenvalue equation

Eq. (19) to the following solvable one with

the application of Eq. (6) and (7), and kernel

matrix.

XTBXXTα = λXTα,

BKα = λα. (20)

We can solve the eigenvalue problem Eq. (20).

2.7 Method No.7

The target function of this method is v =

argmin vTSwv. By Lagrange multiplier, the ob-

jective can be represented as v = argminv∈R,||v||=1

vTSwv, and be deduced to

Swv = λv. (21)

With the usage of Wahba Representer Theory,

the kernel matrix, and Eq. (6), we deduce the
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Table 2　 Total variance of projected samples, each projected inner-class variance, and sum of

square-distances between projected class-means conducted on Fisher Iris data set of Gaussian

kernel, σ = 0.2, for each method. The bold data shows the optimal results of same items among

seven methods.
Method No. Total variance Total variance of class 1 Total variance of class 2 Total variance of class 3 distance between two classes

1 6.2901e-04 7.6961e-11 1.8332e-10 9.2548e-09 0.0056

2 0.0814 0.1562 0.0016 4.4162e-04 0.2624

3 0.0167 1.7943e-11 4.2740e-11 2.1577e-09 0.1496

4 0.0830 0.1749 0.001279 3.4076e-04 0.2227

5 0.0175 2.2640e-13 5.3928e-13 2.7225e-11 0.1563

6 0.0574 0.0235 0.0075 0.0030 0.4129

7 0.0216 4.4864e− 31 1.4725e− 31 2.0750e− 31 0.1927

Table 3　 Total variance of projected samples, each projected inner-class variance, and sum of

square-distances between projected class-means conducted on Fisher Iris data set of Polynomial

kernel, r = 3, for each method. The bold data shows the optimal results of same items among

seven methods.
Method No. Total variance Total variance of class 1 Total variance of class 2 Total variance of class 3 distance between two classes

1 1.6533e-04 2.2965e-06 2.8006e-05 8.4096e-05 0.0011

2 1.0052e+05 714.0925 1.5101e+04 4.8193e+04 7.1050e+05

3 1.2196e-08 9.3949e-11 1.8823e-09 5.9085e-09 8.5849e-08

4 1.0060e+05 778.7099 1.5358e+04 4.8745e+04 7.0861e+05

5 9.2758e+04 179.2304 1.1506e+04 4.0608e+04 6.7552e+05

6 1.0142e+ 05 1.4489e+03 1.5166e+04 4.8512e+04 7.1525e+ 05

7 7.5838e-25 1.1093e− 25 2.2541e− 25 7.9985e− 25 3.1617e-24

eigenvalue equation (21) and obtain

XTWXv = λv,

WKα = λα. (22)

The eigenvalue problem Eq. (22) is solvable.

Now we finish the theoretical deduction of

our proposed five methods, kernel PCA and

GDA.

3. Evaluation

In this section, we evaluate our proposed

KLPCDA using Fisher Iris 7) and wine 24)

data sets. We choose two kernel methods, Gaus-

sian kernel

k(x, z) = exp(
−|x− z|2

2σ2
),

and Polynomial kernel

k(x, z) = (< x, z > +1)r.

By calculating the total variance, the total vari-

ance of each class, and the distance between

projections of each class mean, we evaluate

each method visually and quantitatively.

3.1 Evaluation on Fisher Iris Data

In this data set, there are 150 instances with

four attributes: sepal length, sepal width, petal

length, and petal width. It contains 3 classes

of 50 instances each: Iris-setosa, Iris-versicolor,

and Iris-virginica. In this data set, one class

is linearly separable from the other two and

the latter are not linearly separable from each

other. In the following evaluations, all the

samples are centered in feature space by a cen-

tered kernel matrix.

Figure 1 and Figure 2 show the classifica-

tion results of projections of the samples onto

the first two principal component axes of five

methods in our proposed KLPCDA, KPCA,

and GDA on Fisher Iris data set by using Gaus-

sian kernel and Polynomial kernel, respectively.

Table 2 and Table 3 present the quantitative
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Fig. 2　 Projections of seven kernelized data analysis methods on Fisher Iris data set by using

Polynomial kernel with r = 3. The labels 1, 2, 3 corresponds to the classes Iris-setosa, Iris-versi-

color, and Iris-virginica, respectively. The X axis is the first principal component, and the Y axis

is the second principal component.

evaluations of seven methods in KLPCDA with

Gaussian kernel and Polynomial kernel, respec-

tively.

3.2 Evaluation on Wine Data

In this dataset, there are 178 wine samples of

three classes labeled 1, 2, and 3. It has thirteen

attributes: 1) Alcohol, 2) Malic acid, 3) Ash,

4) Alcalinity of ash, 5) Magnesium, 6) Total

phenols, 7) Flavanoids, 8) Nonflavanoid phe-

nols, 9) Proanthocyanins, 10) Color intensity,

11) Hue, 12) OD280/OD315 of diluted wines,

and 13) Proline. Class 1, 2, and 3 have 59, 71,

and 48 samples, respectively.

Figure 3 and Figure 4 present the visual eval-

uation of our proposed five methods in KLPCDA,

GDA, and KPCA, conducted on Wine data set

by using Gaussian kernel and Polynomial ker-

nel, respectively. Table 4 and Table 5 present

the quantitative evaluation of seven methods

in KLPCDA with Gaussian kernel and Poly-

nomial kernel, respectively.

4. Analysis and Discussion

4.1 Discussion on Results from Fisher

Iris Data

In Figure 1 of Gaussian kernel on Fisher

Iris dataset, we choose parameter σ = 0.2.

Our proposed methods NO.1, NO.5, NO.6, and

NO.7 have perfect classification results as GDA,

all of which completely separate three classes.

Method NO.2 has a similar but a little bit

better result than KPCA. Each of our pro-

posed methods can classify data clearly and

perform not inferior and even better than GDA
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Fig. 3　Projections of seven kernelized data analysis methods on Wine data set by using Gaussian

kernel with σ = 0.2. The X axis is the first principal component, and the Y axis is the second

principal component.

or KPCA. Table 2 presents the quantitative

evaluation results, from which we know KPCA

has the maximum total variance which is tightly

larger than that of our proposed method NO.2.

Our proposed method NO.7 has the minimum

sum of each inner-class variance. Our proposed

method NO.6 has the maximum sum of square

distances between projected class means. Our

proposed methods NO.5 and NO.7 have better

values on every evaluation metric item than

GDA, and our proposed methods have better

values on some of the evaluation metric items

than KPCA.

Figure 2 and Table 3 show the evaluation re-

sults conducted on the Fisher Iris data set with

the polynomial kernel, where we set the param-

eter as r = 3. From the figure, we can visually

observe that the classification results of meth-

ods NO.1, NO.2, and NO.5 are nearly the same

as that of KPCA, which have different projec-

tion directions from that of GDA. In general,

our proposed methods NO.1, NO.2, NO.5, and

NO.6 have not a bad performance but are infe-

rior to that of using a Gaussian kernel. Mean-

while, these methods have similar classification

effects to KPCA and GDA. From Table 3, our

proposed method NO.6 has the maximum total

variance of projected data and sum of square

distances between projected class means, while

method NO.7 has the minimum sum of each

projected inner-class variance. Consequently,

it indicates that our proposed method NO.7

has advantages over GDA and KPCA on inner-

class variances. And method NO.6 has better

values on evaluation metric items of total vari-

ances and the sum of the square distance be-

tween class means than GDA and KPCA.
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Table 4　 Total variance of projected samples, each projected inner-class variance, and sum of

square-distances between projected class-means conducted on Wine data set of Gaussian kernel,

σ = 0.2, for each method. The bold data shows the optimal results of same items among seven

methods.
Method No. Total variance Total variance of class 1 Total variance of class 2 Total variance of class 3 distance between two classes

1 0.0057 4.5842e-17 2.47689e− 04 0.0053 0.0154

2 0.0056 2.4168e− 32 0.0010 0.0085 0.0082

3 0.0146 6.1464e-16 0.0058 0.0121 0.0616

4 0.0113 3.1197e-05 0.0201 0.0202 8.2849e-04

5 0.0057 4.3761e-17 3.2754e-04 0.0049 0.0164

6 0.0113 2.4011e-31 0.0047 0.0086 0.0508

7 0.0069 1.7207e-31 3.2759e-04 0.0063 0.0190

Table 5　 Total variance of projected samples, each projected inner-class variance, and sum of

square-distances between projected class-means conducted on Wine data set of Polynomial kernel,

r = 3, for each method. The bold data shows the optimal results of same items among seven

methods.
Method No. Total variance Total variance of class 1 Total variance of class 2 Total variance of class 3 distance between two classes

1 1.9676e+14 2.6755e+14 1.1996e+14 5.3108e+12 8.4263e+14

2 7.0470e+17 9.5720e+17 4.3000e+17 1.9086e+16 3.0195e+18

3 3.3206e+03 4.5179e+03 2.0235e+03 89.4830 1.4216e+04

4 7.0471e+17 9.5738e+17 4.2994e+17 1.9075e+16 3.0193e+18

5 0 0 0 0 0

6 7.0519e+ 17 9.5806e+17 4.3063e+17 1.9208e+16 3.0197e+ 18

7 1.8822e-11 1.3672e− 11 5.9977e− 12 5.4393e− 12 6.8830e-11

4.2 Discussion on Results fromWine

data

Figure 3 shows the results on Wine data

set of Gaussian kernel with parameter σ =

0.2. Every of our proposed five methods as

well as GDA has great classification results.

It indicates that our proposed methods per-

form much better than KPCA. As the quanti-

tative evaluation results in Table 4 show, GDA

has the maximum total variance of projected

samples and the sum of square distances be-

tween projected class means, while our pro-

posed methods NO.2, NO.1, and NO.5 have

the minimum sum of inner-class variances of

projected classes 1, 2, and 3, respectively. In

addition, the proposed method NO.6 receives

better values than KPCA on all of the evalu-

ation metric items. Meanwhile, except for the

total variance item, all of our proposed meth-

ods have better values than KPCA, quantita-

tively.

From Figure 4 obtained from the Wine data

set of the polynomial kernel with parameter

r = 3, all the results are not good. During

our calculation, we met complex numbers and

dealt with them by deleting the image part

and leaving the real part. It leads to that

the data of method NO.5 are all zeros, which

can not be taken into consideration. Table 5

shows that our proposed method NO.6 has the

maximum total variance and the sum of the

square distance between classes and method

NO.7 has the minimum sum of inner-class vari-

ances. It illustrates that our proposed meth-

ods NO.6 and NO.7 have advantages over GDA

and KPCA, quantitatively.

4.3 Discussion on Observations from

Evaluation

Here, we make some analysis of the obser-

vation from the evaluation results. First, the

evaluation performance of the Gaussian kernel
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Fig. 4　Projections of seven kernelized data analysis methods on Wine data set by using Polyno-

mial kernel with r = 3. The X axis is the first principal component, and the Y axis is the second

principal component.

is better than that of the Polynomial kernel

no matter conducting on the Fisher Iris data

set or Wine data set. While there comes one

problem if the parameter σ = 0.2 of the Gaus-

sian kernel is optimal, whether the polynomial

kernel performs inferior to the Gaussian ker-

nel with any parameter. We will work on this

parameter optimization problem in the future.

Second, some of our proposed methods have

better performance and briefer deduction pro-

cesses than GDA and KPCA under the same

conditions. It can be used to replace GDA or

KPCA under certain circumstances for simpler

calculations. Moreover, some methods have so

close projection directions that we can make

use of to choose more suitable and simpler meth-

ods for different problems.

Third, we proposed five methods from the

linear combination of three objectives of KPCA

and GDA. We will explore other combination

ways according to the quantitative evaluation

results by contrasting the advantages and prop-

erties of different methods, to obtain more ef-

fective data analysis methods.

Fourth, the projection directions and quan-

titative data results can tell us the differences

and changes in the inner relationships of data

before and after being projected into higher

dimensional space. It can help us to inquire

into the possibility of kernelizing data analysis

methods in other spaces.

5. Conclusion

In this paper, we extended the five data anal-

ysis methods proposed by Pei 19) named Lin-

ear Principal Component Discriminant Analy-

sis to high dimensional space by mapping the

data into a feature space and applying kernel
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methods to handle mapped data. We called it

Kernelized Linear Principal Component Dis-

criminant Analysis. It combines supervised

and unsupervised learning methods so that we

can refer to our KLPCDA as semi-supervised

learning methods to be used for both classifica-

tion and clustering problems. We evaluate two

data sets and use two kernel functions, from

which we illustrate the advantages of our pro-

posed methods over KPCA and GDA.

In the future, we will continue to focus on

solving three problems about our proposed

KLPCDA. The first one is the parameter op-

timization issue. We will explore the optimal

parameters of each kernel function resulting in

the optimal evaluation results and attempt to

exhibit the changing trend of performance as

parameters change visually. This is a signif-

icant work of practical application. The sec-

ond one is investigating other possible combi-

nations or creative ways of the three objectives

of KPCA and GDA, to obtain new kernelized

data analysis methods with lower complexity

and better classification or clustering perfor-

mance or any other advantages. The last one

is to apply our methods to the real scene, by

using more realistic data sets to solve more

practical problems and achieve more meaning-

ful and effective results. These subjects will be

involved in our future work.
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