UAV搭載LiDARを用いた橋梁の3次元計測と精度評価

3D scanning and accuracy evaluation using UAV-mounted LiDAR

○小林亜里紗, 溝口知広

OArisa Kobayashi, Tomohiro Mizoguchi

日本大学

Nihon University

キーワード: 精度評価(accuracy evaluation), モバイルレーザスキャナ(MLS), 無人航空機(UAV), CIM(Construction Information Model), 橋梁調査(bridge inspection)

連絡先:〒963-8642 福島県郡山市田村町徳定字中河原1 日本大学工学部情報工学科 小林亜里紗, Tel.: 024-956-8825, E-mail: cear23014@g.nihon-u.ac.jp

1. はじめに

高度経済成長期に建設された橋梁の老朽化に 伴い、その維持管理の必要性が高まっている. 2014年からは、国土交通省による道路橋定期点 検要領¹⁾に基づき,5年に1回の点検が始まった. この点検要領では、専門知識と技術を有する点 検者が、近接目視にて部材ごとに健全性を診断 し、その結果を適切な方法で長期的に記録、蓄 積することが定められている.また、この点検 要領は2019年に改定が行われ、近接目視と同等 の健全性の診断ができる情報を得られる支援技 術を用いることが可能となり、ドローンを用い た橋梁点検の事例が増えてきている. それに伴 い, 点検結果の記録, 蓄積にも3Dモデルを用 いたデジタル管理が推進されている. そこで現 在では,橋梁の3DモデルであるCIM (Construction Information Model)を作成し、劣化 や損傷を撮影した画像や文書など、点検に関す るあらゆる情報をCIM上の該当箇所に関連付け て保存することが一般的な手段として確立され つつある.橋梁の維持管理に3Dモデルを利用

することで,損傷の位置やその連続性,橋梁全体の損傷を確認しやすいといった利点がある²⁾.しかしながら点検の対象となる橋梁ではCIMや3DCADなどの3Dデータが存在することはほとんどなく,実際の橋梁を3D計測し,取得した点群データよりCIMを作成する必要がある^{3,4,5)}.特に劣化や損傷位置を正確に記録するためには,記録媒体であるCIMを高精度に作成する必要がある.

橋梁の3D計測のためには、足場のない箇所が 存在することから、UAV (Unmanned Aerial Vehicle)の利用は不可欠である.UAVを利用して 3D計測する方法として、まず、Structure from Motion (SfM)と呼ばれる、複数枚の画像から3Dモ デルを再構成する方法がある^{4,5,6)}.この方法では、 安価に3D作成が可能であり、撮影画像を点検に 利用することも可能である.しかしながら、橋梁 全体を網羅するには数百~数千枚の画像が必要と なり、その撮影には数時間もの時間を要し、さら に後の再構成処理に数十時間を要してしまうとい った問題がある⁵⁾.もう1つの方法として、LiDAR (Light Detection and Ranging)を利用する方法があ る. この方法では,機材は高価であり,画像は 別途取得する必要があるが,計測と後処理は数 十分程度で極めて効率的に行える利点がある. またSfMと比べ,天候に左右されにくく計測が 行える利点もある. これまでに,前者のSfMに ついては,品質と幾何学的精度という観点から 生成した計測点群を評価する研究例がある^{5.6)}. 一方,後者のLiDARについては十分な報告が少 ないのが現状である.

そこで本研究では、UAV搭載LiDARによる橋梁の3D計測を行い、取得した点群の精度評価を行うことを目的とする.

2. 使用するデータ

本研究では、Fig.1に示す福島県郡山市にあ る阿久津橋(橋長251m,幅員7.4m)の1径間 (約50m)の範囲を対象とした. 3D計測には Fig.2(a)に示すEmesent社のモバイルレーザスキ ャナ(MLS) Hovermapを使用した. この Hovermapには、Velodyne社の円柱型スキャナ VLP-16が搭載されており、360°×30°の範囲に レーザを照射できる.最大計測距離は100m, 計測精度は±30mmである. さらにこのスキャ ナ自体を回転させることで、全周360°×360°の 範囲にレーザをまんべんなく照射することが可 能である. そのため、従来型では計測が困難で あった点検で重要な床板も,橋梁下を飛行しな がら計測できる. Fig.3(a)に計測時の飛行経路 を示す. 主桁に平行に速度1m/秒程度で2往復 飛行した.飛行時間は10分程度であった.

精度検証のために, Fig.2(b)に示すFARO社の 地上設置型レーザスキャナFocus Laser Scanner (TLS)を用いた計測を行い,取得した点群を実 証値として使用する.このスキャナの最大計測 距離は150m,計測精度は±1mmである. Fig.3(b)に示す8か所から計測を行い,計測時間 は約1時間程度を要した. Table1に使用したスキャナの主なスペックを示 す. 検証の対象は, Fig.4に示す1径間分の点群で ある. 総点数はMLSでは30,625,947点, TLSは 25,416,605点である.

Fig.1 実際の橋梁

(a) UAV搭載LiDAR (MLS)

(b) 地上設置型LiDAR (TLS)

Fig.2 使用した機器

	MLS	TLS
名称	Hovermap (Emesent 社)	Focus Laser Scanner (FARO 社)
重量	1.8kg	4.2kg
最大 計測距離	100m	150m
計測精度	±30mm	±1mm
視野	360°×360°	360°×300°
データ取得 レート	300,000 点/秒	500,000 点/秒

Table 1 使用した機器の仕様

Fig.4 使用したデータ

3. 精度評価のための処理手順

本研究での処理手順をFig.5に示す.まず前処 理として,2つの点群データのレジストレーショ ンを行う.次に,視覚的な点群欠損の評価を行 う.その後,点密度評価,平面フィッテングに よる局所的な精度評価,点群間距離評価による 大局的な精度評価の3項目を定量的に行う.

Fig. 5 処理手順

(a) MLSの飛行経路

(b) TLSの計測位置

Fig.3 3D計測の概要

4. 実験方法と結果

4.1. レジストレーション

取得した点群データは異なる位置・機器で計 測したものであるため、精度評価を行う前に ICP法を用いた3D点群同士のレジストレーショ ンを行う.このICP法では,互いの点群距離の 総和が最小となるよう,一方を他方に対して整 列させる.Fig.6にレジストレーション後の点 群を示す.

Fig.6 レジストレーション後の点群

4.2. 視覚的な点群欠損の評価

橋梁は,大きく分けて上部構造,下部構造に 分けられる.上部構造とは,歩行者や自動車な どを直接支持する部分のことであり,主桁,横 桁,床板などで構成される.下部構造は,上部 構造を支持する部分のことであり,橋台,橋脚, 基礎で構成される.また,上部構造と下部構造 は支承によって結合されている.特に主桁,横 桁,床板,支承が点検対象として重要視されて いるため,3Dモデル上でも詳細に部材を識別 できなければならない.

(a) 上部構造

(b) 下部構造

(c) 支承

Fig.7 橋梁の構造

ここでは、点群全体を対象に、点群中のデー タ欠損の有無を目視で確認することで、視覚的 な点群欠損の評価を行った.Fig.8は、この評 価結果を示したものである.MLSでは、橋台、 橋脚、支承はもちろん、上部構造を構成する主 桁、横桁、床板などの点検対象となる部材がし っかりと計測できている.一方でTLSは、橋台、 橋脚、支承はしっかりと計測できているが、上 部構造はデータ欠損が多く、重要な部材が十分 に計測できていないことが分かる.MLSは点 検対象となる部材を抜け漏れなく3D計測でき るため、3Dモデリングの際のデータ取得に適 した手段である.

(a) MLS

⁽b) TLS

4.3. 点密度評価

ここでは,橋台,橋脚,床版の表面を対象に, 物体表面の単位面積当たりの点数である点密度 を求めることで、点密度評価を行った. Table2は、 この評価結果を示したものである.まず、TLSの 点密度と比較すると, MLSは部材間のばらつき が大きいのに対し、TLSは部材間のばらつきが小 さいことがわかる.3つの部材の比較を行うと、 レーザが水平方向に照射される橋台と橋脚では 密度が高く、鉛直上向きにある床板では低いこ とがわかる.これは、MLSの進行方向に存在す る橋台、橋脚はドローンが移動している間もレ ーザが照射され続けていたため, 取得点数が多 くなり、高密度な点群が得られたと考えられる. 一方で床板は、使用した機器Hovermapではスキ ャナそのものがおよそ2Hz/秒で回転しており, 鉛直上方向を向く時間帯しか床板にはレーザが 照射されない. また, Hovermapをドローン下に 装着して計測を行うため、橋梁下からの計測で は鉛直上方向に位置する床板はドローンの陰に なり、レーザが届きにくい位置に存在する.よ って,水平方向に比べて取得点数が少なくなり, 低密度な点群であったと考えられる. このこと から、MLSは水平方向の計測は得意であるが、 鉛直上方向の計測では点密度が低くなる傾向に あることが確認できる.

次に、低密度であった床板を、主桁と横桁で 区切られる面積のほぼ等しい9領域に分割し、領 域ごとの点密度評価を行った. Table3は、この評 価結果を示したものである. MLSは平均9,965.43 点/m²、標準偏差が2,944.31点/m²と非常にばらつ きが小さく、およそ均一であった. 一方でTLSは、 平均29,229.34点/m²、標準偏差43,599.27点/m²と大 きかった. 以上から、MLSは点密度は低いもの の、点密度のばらつきが小さいことから、3Dモ デリングにおいても、領域間の差異が小さく、 一定品質を保つことができる.

表面	面積(m²)	密度(点/m²)	
		MLS	TLS
橋台	26.69	65,471.56	32,078.10
橋脚	38.77	81,056.65	14,127.80
床板	138.52	10,839.76	25,247.85

Table 2 部材毎の点密度評価

Table 3 領域毎の点密度評価

表面	面積(m²)	密度(点/m²)	
		MLS	MLS
領域①	3.26	5,477.71	15,696.74
領域②	4.29	14,023.18	139,741.61
領域③	4.25	14,057.52	29,226.24
領域④	4.13	12,565.18	3,663.44
領域⑤	4.24	8,741.76	14,006.01
領域⑥	3.89	9,540.08	43,489.89
領域⑦	3.89	8,156.12	12,309.41
領域⑧	3.16	8,988.53	3,777.86
領域⑨	3.29	8,138.76	1,152.90
最大		14,057.52	139,741.61
最小		5,477.71	1,152.90
平均		9,965.43	29,229.34
標準偏差		2,944.31	43,599.27

4.4. 平面フィッテングによる局所的な精度評価

ここでは、4.3節と同様に、橋台、橋脚、床版 の表面を対象に、平面上に分布する点群に対し て最小二乗法を用いた平面当てはめを行い、点 群の平面との距離の分布を求めることで、局所 的な精度評価を行った.

Table4にこの評価結果を、Fig.9に橋脚の誤差ヒ ストグラムを示す. 二乗平均平方根誤差(RMSE) は, MLSでは17.39mm, TLSでは12.10 mmとなり, TLSのほうが計測精度が良い結果となった.しか し、高い計測精度を持つTLSのRMSE値がカタロ グスペックの±1mmに比べ全体的に大きい結果と なった.これは、実際の構造物は設計通りに平 にはできておらず、歪みが含まれると予想され るが、その結果を反映したものと考えられる. また、このことは同様に、MLSのRMSE値も歪み に影響を受けた結果を反映していると考えられ る. 歪みを考慮してもMLSにて取得した点群の 精度は10~20mm程であり、一般的に3Dモデルは 10mm程の精度があれば作成することは可能であ る⁵ため, MLSは十分に3Dモデリングにも利用で きると考えられる.

Table 4 点と平面の距離評価

表面	RMSE(mm)	
	MLS	TLS
橋台	11.17	4.90
橋脚	10.93	7.21
床板	30.08	24.20
平均	17.39	12.10

Fig.9 橋脚の誤差ヒストグラム

4.5. 点群間距離による大局的な精度評価

ここでは、位置合わせ後の点群全体を対象に、 MLSの各点から、TLS点群内での最近点を探索 し、その距離分布を求めることで、大局的な精 度評価を行った.Table5は、この評価結果を示 したものである.ここから総点数の90%以上が 50mm以下の最近点間距離にあることがわかり、 計測精度±30mmを考慮すると、非常に良好な 結果が得られた.4.2節で示したように、TLS では欠損が非常に多く、50mmを超えた点群の 多くでは、この欠損のため最近点間距離が大き くなってしまっている.

次に、50mm以下の点群に対し、カラースケ ール分析を行い、最近点間距離の分布を確認し た.Fig.10は、この評価結果を示したものであ る.MLSの誤差は局所的に集中することなく、 形状全体でおよそ一様に分布することが確認で きた.

また,点群の断面プロファイルを用いて,形 状の正確さを確認した.Fig.11は,この評価結 果を示したものである.局所的にみると一定の ばらつきはあるものの,直線部分は湾曲するこ となく,直線として計測できていることが確認 できた.MLSは局所的な誤差がなく,直線も しっかりと計測できるため,直線や平面の多い 橋梁の3Dモデリングに適している.

Table 5 位置合わせ後の最近点間距離の評価

	点数	割合(%)
全体	30,625,947	100.0
50mm 以下	27,671,898	90.4
30mm 以下	26,709,822	87.2
10mm 以下	16,821,232	54.9

Fig.11 断面プロファイル

5. おわりに

本研究では、UAV搭載LiDARによる橋梁の 3D計測と精度評価を行い、その有効性を検証 した.様々な検証により、取得したMLS点群 の精度は一般に3Dモデリングに要求される 10mm程度の誤差内に収まっていることを確認 できた.したがって、UAV3D計測の主流であ るSfMを用いた3Dモデル再構成で生成した点 群と比べて、計測精度はほぼ同等であるものの、 計測と後処理を極めて効率的に行えるため、 MLSは3Dモデリングのデータ取得方法の1つと して有効な手段といえる.

今後の課題として、ドローン速度や飛行ルー トを変更した場合の精度検証,取得した点群か らの自動CIM構築手法の開発,実際の橋梁点検 業務への展開などが挙げられる.

参考文献

- 国土交通省:道路橋定期点検要領, <u>https://www.mlit.go.jp/road/sisaku/yobohozen/</u> <u>tenken/yobo4_1.pdf</u>, (2023-9-28)
- 2) 関和彦,窪田諭: CIMモデルを用いた3D 損傷図作成支援システムの開発と評価, AIデータサイエンス論文集,3巻,J2号, (2022)
- 川野浩平,青山憲明,寺口敏生,関谷浩 孝:土木分野における既存構造物の簡易な 3次元モデル作成方法に関する研究,土木 情報学シンポジウム講演集, Vol.43, No.16, pp.181-184, (2018)
- 4) 二宮建,榎本真美,下川光治,服部達也, 新田恭士:橋梁3次元データを活用する橋 梁点検手法の提案とプロトタイプを用いた 効果検証の報告,土木学会論文集F4(建 設マネジメント),76巻,2号,pp.I_32-

I_46, (2020)

- 5) 木本啓介,松田浩:中小橋梁の点検におけ るSfMの活用方法の比較・検証,実験力学 Vol.17, No.4, pp.290-297, (2017)
- 6) Masoud Mohammadi, Maria Rashidi, Vahid Mousavi, Ali Karami, Yang Yu, Bijan Samali : Quality Evaluation of Digital Twins Generated Based on UAV Photogrammetry and TLS: Bridge Case Study, Remote Sens.2021, vol.13, No.3499, (2021)

謝 辞

本研究は、福島県令和5年度産学連携ロボット 研究開発支援事業の一部として行われました.