計測自動制御学会東北支部 第 346 回研究集会 (2023.12.20) 資料番号 346-13

小型空中超音波フェーズドアレイ装置の開発 ~ビームの指向性とその利用法についての検討~

Development of small-sized airborne ultrasonic phased array device

 $\sim\!\!$ Study of ultrasonic beam directivity and its usage $\sim\!\!$

○杉本潤彌*1,カニエテ ルイス*2,高橋隆行*1

○ Junya Sugimoto^{*1}, Luis CANETE^{*2}, Takayuki Takahashi^{*1}

福島大学*1, サン・カルロス大学*2

Fukushima University^{*1}, University of San Carlos^{*2}

キーワード: 超音波センサ (ultrasonic sensor), フェーズドアレイ (phased array), グレーティングローブ (grating lobe), 指向性 (directivity)

連絡先: 〒 960-1296 福島県福島市金谷川1番地 福島大学 理工学群 共生システム理工学類 高橋研究室
 杉本潤彌, Tel.: (024)548-5259, Fax.: (024)548-5259, E-mail: junya@rb.sss.fukushima-u.ac.jp

1. 緒言

近年,人間の生活を支援することを目的とした ロボットの研究が盛んに行われている.本研究室 でも Fig.1 に示す人間支援ロボット I-PENTAR¹) の開発を行っており,屋内での荷物運搬などの 作業を想定して研究が進められている.想定し た仕事を行うためには,荷物や障害物といった 物体の検知や周囲の環境を認識することが必要 となる.

一般的に移動ロボットの物体の検知には,非 接触型センサが用いられており,主に光学式の ものや超音波式のものが採用されている.光学 式センサは応答が高速,かつ高分解能といった 利点があるが,鏡面や透明な物体の検知は難し く,さらに外乱光による影響を受けてしまうと

Fig. 1 I-PENTAR

いう特徴がある.一方で,超音波式センサは応 答速度が光学式のものと比べて遅く,温度や風 の影響を受けてしまうが,鏡面や透明な物体の 検知も行えるという特徴がある.

これらの特徴から,ロボットの環境認識の際 には,光学式と超音波式の2つのセンサを同時

Fig. 2 Ultrasonic phased array transmitter and microphone array receiver

に用いることで各々の欠点を補い,より精度の 高い環境認識が行えると考えられる.本研究で は超音波式センサを用いた手法に着目する.高 橋らは指向性を高めることができ,かつ電子的 な操作によって複数の超音波ビームを発生させ, その向きを変えることが可能なフェーズドアレ イと呼ばれる手法で物体の探査を行うことを提 案した²⁾.

上原らの先行研究³⁾で提案されたセンサシ ステムの外観をFig.2に示し,その送信機アレ イをFig.3に示す.この超音波センサシステム では、フェーズドアレイ送信機から超音波を照 射し、マイクロホンアレイ受信機を用いて物体 から反射した超音波を受信する.その受信信号 を MUSIC (multiplue signal classification)法 ⁴⁾で処理することで、高分解能な物体位置推定 を実現している.

先行研究³⁾で提案されたセンサシステムでは, 発生させる超音波ビームが2本の時, MUSIC法 を用いて物体の位置推定が行えることが確認さ れた.しかし,ビーム数が2本で広範囲を推定 するためには何度もビームを照射する必要があ り,推定に時間がかかってしまう.そのため,1 度に照射するビーム数を増やすことで短時間で の位置推定が可能であると考えた.本研究では, 1度の照射で発生させるビーム数を増やした際 のビームの指向性についての検討を行う.

Fig. 3 Ultrasonic phased array tarnsmitter

2. センサシステム

本章では先行研究³⁾で提案された超音波セン サシステムについて述べる.

2.1 MUSIC法

MUSIC 法は,マイクロホンアレイ受信機を 用いて受信した信号の相関行列の主成分分析を 行うことで,受信波の到来方向を高分解能で推 定可能なアルゴリズム⁴⁾である.先行研究では, 単一のフェーズドアレイ送信機から送信された 超音波が物体から反射されることになる.した がって,マイクロホンアレイ受信機で観測され る反射波は,同一の送信源に由来するものであ るため,受信波どうしがとても強い相関を持つ.

そこで, MUSIC 法の前処理として空間移動 平均法⁵⁾(Spatial Smoothing Processing, 以 下, SSP)を導入し,相関のある反射波の到来 方向を推定する.空間移動平均法を適用した場 合,マイクロホンアレイ受信機を構成する受信 機の数*M*に対して,反射波は最大*M*/2 個しか 推定できない.

Fig.2に示したセンサシステムにおいては,マ イクロホンアレイ受信機を構成する受信機の数 が16個であるため,推定可能な反射波数は最大 8個である.

Fig. 4 Principle of phased array transmitter

2.2 フェーズドアレイ送信機

フェーズドアレイ送信機とは,Fig.4のよう にセンサ素子を平面状に並べて配置し,各素子 への入力信号に位相差を与えることで,超音波 ビームの照射方向を制御する方法である.位相 が一致し強め合う角度方向では,強い超音波ビー ムが発生するため,角度をある程度限定するこ とが可能である.また,各素子への入力信号の 位相差を制御することで超音波ビームの方向を 容易に制御することができるため,周囲環境の スキャン時に装置の向きを変えるような機械的 な動作の必要がなく,短時間でのスキャンが可 能となる.

照射センサ素子を配置したアレイを作成し, 構成する全ての素子が同じ指向性 $G(\theta)$ を持つ と仮定すると, θ_0 の方向に超音波ビームを発生 させる場合のアレイ全体の指向性 $F(\theta)$ は以下 のように得られる.

$$F(\theta) = G(\theta) \sum_{n=0}^{N-1} a_n e^{jnkd(\sin\theta - \sin\theta_0)}$$
$$= G(\theta)E(\theta)$$
(1)

ここで、
kは

$$k = \frac{2\pi f}{v} = \frac{2\pi}{\lambda} \tag{2}$$

である.各パラメータを Table 1 に示す.式(1) において, $E(\theta)$ はアレイファクターと呼ばれ, 照射角度及び素子の配置によって決まる指向性 である.

	Table 1 Symbols
Symbol	Description
a_n	Array-amplitude taper
n	Element number
i	Grating lobe number
d	Distance between sensors
$ heta_0$	Target direction
f	Operating frequency
v	Velocity of sound
λ	Wavelength

2.3 グレーティングローブ

Fig. 5 Grating lobe

フェーズドアレイ送信機では素子の配置によっ ては超音波が数周期ずれて重なり合ってしまう 角度ができる.それによって Fig.5 に示すよう な,照射したい角度 θ₀ の超音波ビーム (メイン ローブ)とは別の角度 θ_i にグレーティングロー ブと呼ばれる強い超音波ビームが発生する場合 がある.グレーティングローブが発生する角度 θ_i は以下のように得られる.

$$\theta_i = \sin^{-1} \left(\sin \theta_0 + i \frac{\lambda}{d} \right)$$
(3)
$$i = \pm 1, \pm 2, \pm 3, \dots$$

 $-90^{\circ} \le \theta_0 \le 90^{\circ}, -90^{\circ} \le \theta_i \le 90^{\circ}$

式(3)よりグレーティングローブが発生する条

$$\left|\sin \theta_0 + i\frac{\lambda}{d}\right| \le 1 \tag{4}$$
$$i = \pm 1, \pm 2, \pm 3, \dots$$

式(4)の持つ解の数は,グレーティングローブの 発生する本数と等しい.よって,式(3)と式(4) は,メインローブ方向 θ_0 と隣り合う素子の中心 間隔(以降,素子間距離)によってグレーティン グローブの発生する角度 θ_i と本数が決定するこ とを示している.

3. 超音波ビームの指向性

本章では,式(1)を用いて1度の照射で発生 させるビーム数を増やした際のビームの指向性 について,シミュレーションによる検討を行う.

3.1 検討方法

Fig. 3 に示したフェーズドアレイ送信機では, 素子間距離 d=6.2[mm],使用する素子数 N=8個である.このとき,発生させることができる 最大のビーム数はメインローブとグレーティン グローブ各1本である.ここでは,最大ビーム 数を増やすため,d=18.6[mm]としてシミュレー ションを行う.この条件では,発生させること ができる最大のビーム数はメインローブが1本, グレーティングローブが4本である.そして,使 用する素子数 N を 2 個,4 個,8 個と変化させ た場合のビームの指向性を比較する.その他の 条件として,音速vは気温 15[°C]時のものを用 いることとし 340.65[m/s]とする.また,超音 波の周波数 f は 40[kHz],波長 λ を 8.52[mm], 照射角度 θ_0 は 0[deg] とする.

3.2 検討結果と考察

使用する素子数 N を 2 個, 4 個, 8 個とした 場合の結果をそれぞれ Fig. 6, 7, 8 に示す.ま た,それらを重ねて比較した結果を Fig. 9 に示

Fig. 6 Directivity of 2 element phased array tarnsmitter

Fig. 7 Directivity of 4 element phased array tarnsmitter

Fig. 8 Directivity of 8 element phased array tarnsmitter

Fig. 9 Comparison of the directivity in difference of ${\cal N}$

す. これらの図は,縦軸を各メインローブの最 大値で正規化した音の強度 [dB] で表し,音波の 照射される角度を ±90[deg] の範囲で示してい る. Fig.9 を見ると,メインローブとグレーティ ングローブの照射角度は N によらず同一となっ ているが,使用する素子が多くなるほど,ビー ムの幅が細くなる.このことから,使用する素 子数を変更することで,ビームの幅を使い分け られることがわかった.

Fig. 10 Irradiation with wide directivity beams

Fig. 11 Irradiation with narrow directivity beams

3.3 超音波の照射手順

検討結果から,位置推定の際の超音波の照射 手順について Fig. 10 と Fig. 11 を用いて説明す る.まず, Fig. 10 のように使用素子数が少なく 幅の広いビームを異なる角度に照射することで, 物体の有無及びその大まかな方向を推定する. その後, Fig. 11 のような使用素子数が多く幅の 細いビームを複数回照射することで正確な位置 推定を行う.この方法を用いることで,短時間か つ正確で効率のよい位置推定ができると考える.

Fig. 12 Directivity with $d=\lambda$ [mm]

4. 発生するビーム数

3章では、1度の照射で発生させるビーム数を 増やすために素子間距離 d=18.6[mm] とした場 合でシミュレーションを行った.本章では、素 子間距離 d を変化させた場合のビームの本数に ついて検討を行う.

4.1 グレーティングローブの発生式

グレーディングローブの発生条件である,式 (4)は,照射角度 θ_0 が0[deg]の場合,

$$\left|+i\frac{\lambda}{d}\right| \le 1\tag{5}$$

$$i = \pm 1, \pm 2, \pm 3, \dots$$

と表される.式(5)の左辺がちょうど1となるよ うな*i*が存在するとき,解の成立する*i*が最も多 くなるため,その素子間距離*d*においては照射 角度 $\theta_0=0$ [deg]の場合に発生するビーム数が最 大となる.このことから,照射角度 θ_0 が0[deg] の場合に発生するビーム数が最大となるような 素子間距離*d*は以下のように求められる.

$$\left| + i\frac{\lambda}{d} \right| = 1$$
$$\therefore d = |i\lambda| \tag{6}$$

$$i = \pm 1, \pm 2, \pm 3, \ldots$$

4.2 ビーム数の検討

音速および超音波の周波数を3章で行ったシ ミュレーションの条件と同一にすると波長入は 8.52[mm] である.このとき,素子間距離*d*を式 (6)より λ [mm], 2 λ [mm] とした場合の指向性は それぞれ Fig. 12, 13に示すようになる.この とき, θ_i は,照射角度 θ_0 から,正の角度側に大 きくなる程に, θ_1 , θ_2 ...とし,負の角度側に大 きくなる程に, θ_{-1} , θ_{-2} ...としている.

この結果から,素子間距離 $d=\lambda$ [mm] とした 場合は,式(6)の解が成立するのは $i=\pm 1$ であ るため, Fig. 12 で示すように, θ_0 , θ_1 , θ_{-1} で ビームが発生し,ビームの最大数は3本となる.

素子間距離 $d=2\lambda$ [mm] とした場合は,式(6) の解が成立するのは $i=\pm 1$, ± 2 であるため, Fig. 13 で示すように, θ_0 , θ_1 , θ_{-1} , θ_2 , θ_{-2} でビーム が発生し,最大ビーム数が5本となることがわ かる.

既述したように先行研究³⁾で提案されたセン サシステムでは,推定可能な反射波の最大数は 8 であった.したがって,1本のビームに対し て反射波が2個だと想定すると,一度の照射で 発生させるビーム数は4本以下となる.一方で, 物体位置推定のためのビームの照射回数を抑え るためにはビーム数が多いことが望ましい.そ のため,一度の照射で発生させるビーム数を3 本以上,4本以下とする.この時,素子間距離 *d* は以下のように得られる. $\lambda \le d < 2\lambda \tag{7}$

本研究で行う検討では波長 λ は 8.52[mm] で あるため,式 (7) は以下のようになる.

$$8.52 \le d < 17.04 \tag{8}$$

5. 照射するビームの角度

短時間で広範囲な位置推定を行うためには、 少ない回数のビーム照射で位置推定を行う必要 がある.筆者らは,Fig.11 に示すように複数 のビームを照射する際,そのビームをできる限 り等間隔に照射することで効率的に高分解能な 位置推定が実現可能であると考えた.そのため、 ビームの照射角度を変更し、ビームの角度間隔 をできる限り均一に近づけるための手法を検討 する.

5.1 適切なビームの照射角度

ビームの角度間隔をできる限り均一に近づけ るにあたって,いろいろな条件で計算した結果, 以下の4種類のパターンの照射角度で合計4回 照射することで目的に近い照射が行えることが わかった.

パターン1, 2, 3, 4をそれぞれFig.14, 15, 16, 17に示す. また, それらを重ねた図をFig.18に 示す.

パターン1は Fig. 14 のように $\theta_0 = 0$ [deg] の 照射パターンである.これは $\theta_1 \ge \theta_{-1}$ が0[deg] を基準に線対称となる.

パターン2は、 $\theta_0 \ge \theta_{-1}$ または、 $\theta_0 \ge \theta_{-3}$ が、 0[deg] を基準にほぼ対称となるようなものであ る. Fig. 15では θ_0 =53[deg] の場合のビームの指 向性を示している. このとき、 θ_{-3} が -53.9[deg] となり、0[deg] を基準にほぼ対称となっている. また、 θ_{-1} が 15.2[deg]、 θ_{-2} が -15.8[deg] とな り、これらも 0[deg] を基準に対称的となる.

Fig. 14 Irradiation pattern 1

Fig. 15 Irradiation pattern 2

Fig. 16 Irradiation pattern 3

Fig. 17 Irradiation pattern 4

Fig. 18 Directivity when layering pattern 1 to 4

パターン3は, Fig.16に示すような, パター ン1,2で補間できなかった角度にビームを発生 させるものである.

パターン4は, Fig. 17のようにパターン3の照 射角度を0[deg] を基準に対称としたものである.

Fig. 18は, パターン 1~4を全て重ねたもので ある. 各ビームには 0[deg] 方向のビームを θ_{L_0} と して, 正の角度側を θ_{L_1} , θ_{L_2} ..., 負の角度側を $\theta_{L_{-1}}$, $\theta_{L_{-2}}$...のように番号を付ける. この θ_{L_0} と θ_{L_1} のように隣り合う角度の間隔について, 素子間距離 *d* を変化させて確認した. 用いる素 子間距離 *d* は, 式 (8) から, 無作為に 15.9[mm], 16.5[mm] とする.

それぞれの指向性の計算結果を Fig. 19, 20 に示す.また,隣り合うビームの角度の間隔を Fig. 21 に示す. Fig. 21 では,縦軸が角度差 [deg] を表し,横軸が隣り合うビーム方向 $\theta_{L_n} - \theta_{L_{n-1}}$ を表している.

Fig. 21 より,素子間距離 d=16.5[mm] の方が より均等にビームが発生していると言える.し かし, Fig. 19, Fig. 20 から,ビームを照射する 最大角度は素子間距離 d = 15.9[mm] の方が広 いことが分かる.物体位置推定に最適な素子間 距離 dについては、今後検討していく.

6. まとめと今後の予定

本研究では,超音波アレイ送信機において,1 度の照射で発生させるビーム数について検討を

Fig. 19 Directivity with d=15.9 [mm]

Fig. 20 Directivity with d=16.5 [mm]

Fig. 21 Angular distance with d=15.9 and 16.5[mm]

行った.発生させるビームの本数は波長λと素 子間距離 d との関係で決まることを示した.こ の際,使用する素子数を変化させても照射され るビームの角度は変わらないが,そのビームの 幅が変化することを示した.このことから,異 なるビーム幅を切り替えることで位置推定を行 うセンサの使い方を提案した. また,短時間で広範囲な位置推定を行うための照 射方法についても検討を行い,4回の照射で約± 70[deg]の範囲をカバーできることがわかった。 9 今後は,照射されるビームの角度やビームの 角度間隔などを考慮しつつ,位置推定を行う際 により最適な素子間隔*d*の照射パターンなどに ついて検討していく.

参考文献

- 近藤修平, Luis CANETE, 高橋隆行: マニュ ピュレータを搭載した車輪型倒立振子ロボット の制御-拡張状態オブザーバを用いたマニュピュ レータによる物体受け渡し制御, ロボティクス メカトロニクス講演会 2015, 1P2-G03(2015).
- 2) 高橋隆行,高橋亮介,鄭聖熹:超音波アレイセンサによる屋内環境障害物検知システム,第24回日本ロボット学会学術講演会,1E36(2006).
- 3) 上原聡希, 情野瑛, 高橋隆行: 高分解能環境認識 のためのフェーズドアレイ送信機と MUSIC 法 を組み合わせた空中超音波センサシステム, ロ ボティクス・メカトロニクス講演会 2021, 1P2-G04(2021).
- R.O.Schmidt:Multiple emitter location and signal parameterestimation, IEEE Trans. Antennas and Propagat, vol. AP-34,no.3, pp.276-280(1986).
- 5) Tie-Jun Shan, M. Wax and T. Kailath, "On spatial smoothing for direction-of-arrival estimation of coherent signals," in IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.33, no. 4, pp. 806-811,(August 1985).
- 6)加藤正稔:超音波センサによるフェーズドアレイのための20素子用音響管の基本特性,福島大学卒業論文(2012).
- (7) 陳華駿,高橋隆行:音響管を用いた超音波 Phased Array 装置の特性と改良,ロボティクス・ メカトロニクス講演会 2014, 3P2-W05(2014).
- 8) 古宮佐希子,カニエテ ルイス,高橋隆行:超 音波フェーズドアレイ装置のための音響管形状 の改良-角度分解能向上のための検討-,ロボテ ィクス・メカトロニクス講演会 2017, A2A -M09(2017).
- 9) 高橋洋一郎, CANETE Luis, 高橋隆行: 小型 空中超音波フェーズドアレイ装置の開発~送信 器の小型化と分解能の向上~, 計測自動制御学 会東北支部第 314 回研究集会, 資料番号 314-2, (2018).
- 10) 高橋洋一郎, CANETE Luis, 高橋隆行:小型空 中超音波フェーズドアレイ装置の開発~縦方向 の特性改善の手法~,ロボティクス・メカトロ ニクス講演会 2018, 1P2-M13(2018).
- 11) 溝上収,中澤利之,神力正宣: グレーティングロー ブを抑圧する不等間隔アレーアンテナの素子間 隔決定の一方法,電子情報通信学会, Vol.J83-B No.1, 141/143 (2000).