眼球運動を実現する眼窩エピテーゼの開発

Development of orbital epithesis for realizing eye movement

○高橋日向子*,田中清志*,南斉俊佑*,星崎みどり*,福田雅幸*,長縄明大*

○ Kanako Takahashi^{*}, Kiyoshi Tanaka^{*}, Shunsuke Nansai^{*}, Midori Hoshizaki^{*}, Masayuki Fukuda^{*}, Akihiro Naganawa^{*}

*秋田大学

*Akita University

キーワード: 眼窩エピテーゼ (Orbital epithesis), 眼球運動 (Eye movement), 眼電位 (Ocular potential), 信号処理 (Signal processing)

連絡先: 〒 010-8502 秋田市手形学園町 1-1 秋田大学大学院理工学研究科 長縄 明大, Tel.: (018)-889-2726 E-mail: naganawa@gipc.akita-u.ac.jp

1. 緒言

エピテーゼは,悪性腫瘍や外傷等の要因によ る身体の欠損を補うため,体に装着する人工の 補綴物であり,装着することにより健常者と変 わらない外見を手に入れることができるため, 患者の早期社会復帰に役立っている.使用され る部位には,耳や鼻,乳房等のほか,瞼や眼窩組 織が欠損している場合には,Fig.1に示すよう な眼窩エピテーゼが用いられることがある.し かし,現在,臨床で使われている眼窩エピテー ゼには,瞬き・眼球運動機能を有するものはない

Fig. 1: 眼窩エピテーゼの例 Example of orbital epithesis

ため,表情の変化を作り出すことができず,他 者とのコミュニケーションにおいて違和感を与 えるため、社会復帰に影響を与えている.この 問題を改善するためには、エピテーゼの目が健 側と同調して瞬きする,あるいは,眼瞼の形態 と視線が一致している必要があることが報告さ れている¹⁾.しかし,眼窩エピテーゼの研究に おいて,瞬き機能については多くの研究がなさ れてきたが実用化されたものはなく, また, 眼 球運動機能を有するエピテーゼ、あるいは、両 者の機能を有するエピテーゼについては、ほと んど研究が行われてこなかった²⁾. なお,人型 ロボットにおいては、瞬き・眼球運動機能を有 するものも存在するが, 駆動装置等の大きさの 問題から、これらの技術を眼窩エピテーゼに適 用することはできない³⁾.

著書らは,健側と同調した瞬き・眼球運動機 能を有する眼窩エピテーゼの開発を行っている. これまでの進捗として,瞬き機能および眼球の 左右運動機能について検討してきたが,眼球の 動きが左右に限定されていること,さらに,瞬 きや眼球運動の駆動試験において,健側に対し てエピテーゼ側の動作に遅延が生じていた⁴⁾.

本研究では,眼窩エピテーゼにおける眼球運 動機能について,眼球の上下・左右運動を実現 する方法に加え,健側の目の動きに対する遅延 の改善,さらに,小型化について検討したため, その内容について報告する.

2. システム構成

Fig. 2 に眼球運動機能を有する眼窩エピテー ゼのシステム構成図を示す.構成要素としては, ①健側の眼球運動を測る②の測定装置,取得し た眼球運動データを処理する③の波形処理・制 御装置,さらに,制御装置からの信号により動 作する④の眼球運動装置からなる.

本章では、2.1節で眼球運動の測定・波形処理 の方法、2.2節で眼球運動装置について述べる.

2.1 眼球運動の測定・波形処理

眼球運動の測定には眼電図法を用いる.眼電 図法は,眼球の電気的特性を利用した視線移動 測定手法であり,眼球の角膜(黒目部分)は網 膜に対して正の電位を有しており,この電位差 を測定する.なお,瞬きにおいても眼電図が変

Fig. 2: システム構成図 System configuration diagram

化することが明らかになっているため,眼電図 法で取得した波形を,眼球運動・瞬きの動作速 度の違いから信号を分離することにより,瞬き 運動の検出にも活用することができる⁵⁾.

Fig. 3に眼球運動と測定できる波形の関係を 示す. 図に示すように,眼電図の電位変化は,眼 球の回転角とほぼ比例関係であるため,これを 利用して眼電位から眼球の角度を導出すること ができる⁶⁾.

検出方法を Fig.4 に示す.眼電位は,目の周囲 の皮膚に電極を張り付けることで測定可能であ るため,本研究では,表面電極を右の目頭付近, 目尻付近,耳の付け根付近(基準電極)の3ヶ 所に周囲に貼付した.測定した眼電位は,計装 アンプで増幅し,マイコンにおいて,フィルタ 処理を行った後,駆動信号として眼球運動装置 に出力する.なお,サンプリング周波数は100 Hz とした.

フィルタ処理について,試験的に測定した眼 電位に FFT 処理を行った結果から,式(1)に示 すローパスフィルタ処理を行った.

$$L(z) = \left\{ \frac{(1-a)z^{-1}}{1-az^{-1}} \right\}^2 \tag{1}$$

Fig. 4: 検出手順 Detection procedure

ここで, aは任意の定数であり, 眼球運動の周波 数帯より高い 10 Hz 以上のノイズを減衰させる ため, aを適切な値に設定する必要がある.本 研究では, a = 0.5, 0.6, 0.7としてフィルタ処理 を行った結果, a = 0.5, 0.6の場合の 10 Hz 以 上のノイズ成分が除去されていることを確認し たが,実際に眼球運動装置を駆動した結果より, 健側の動きへの追従が早かった a = 0.5と決定 した.

また,眼電位の計測データのドリフトの影響 を抑え,眼球運動装置の駆動に必要な閾値を定 めることを目的として,式(2)のハイパスフィ ルタ処理を行った.

$$H(z) = 1 - \frac{1 - z^{-pq}}{1 - z^{-p}} \cdot \frac{1}{q}$$
(2)

ここで, p, q は定数であり, データ処理におけ る試行錯誤の結果, p = 10, q = 100とした.こ の処理は, サンプリング周波数 100 Hz のデー タに対して, 10 Hz ごとにデータを抽出し, 10 s 間の平均値を求め, 元のデータとの差を求め ることに相当し, 式 (2) は本処理を等比級数の 和として表したものである.

Fig. 5に上記の2つのフィルタで処理した結 果を示す.図より,式(1)のローパスフィルタ処

Fig. 5: 信号処理の結果 Signal processing results

理の結果では、高周波数域のノイズが除去され ているものの、元の信号に対して少しの遅れを 有していることがわかる.一方、さらにハイパ スフィルタで処理した結果については、0 V を 基準とした電圧変化に変換できていることが確 認でき、ドリフトの影響を抑えることができた.

本研究では、眼電図に2つの閾値VH,VLを 設定し、VHとVLに対して角度範囲を定めて 眼球角度を比の値で求め、駆動信号を出力する. なお、眼電図の振幅には個人差があるため、VH とVLは個々に合わせた閾値を設定する必要が ある.

2.2 眼球運動機構の設計

人間の視線の可動範囲は,平均± 45 deg であ ることが知られているが,意図しない限り,± 25 deg を超える視線角度に眼球を動かすことは ないことが報告されている⁷⁾.このため,本研 究では,眼球の視線範囲を± 30 deg として設計 した.

人間の眼球の平均直径は24.0 mm である.また,上下・左右において様々な角度へ回転し,また,その速度も眼球運動の種類によって異なる.ここでは,2自由度を持ち,振幅が30 degの眼球運動を行える機構の検討を行う.

過去に著者らが製作した2自由度機構では, 全体の大きさが幅34.0 mm,高さ50.0 mm,奥 行65.0 mmであったが,これは眼窩に収まるサ イズではない.その要因として,眼球を2自由 度駆動させるには,2つのサーボモータが必要 であるが,そのサーボモータの大きさと機構構 造により大きなサイズになったことによる.

このため,今回の設計では,小型化のためマイ クロサーボモータ (Flash Hobby 製, FH-1083) を採用した.本モータの大きさは,幅 20.0 mm, 高さ 20.0 mm,奥行 6.2 mm であり,眼球の大 きさ内に 1 つのサーボモータを組み込むことが できる. Fig. 6 に機構構造を示す. 図に示すように, サーボモータ1を眼球内に収め, 左右方向の眼 球運動を行う. また, もう1つのサーボモータ 2 は, サーボモータ1ごと眼球パーツを上下方 向へ回転させる.

Fig. 7 に実際に製作した眼球運動駆動装置を示す. 装置の大きさは,眼球の直径が24 mm であり,駆動部は幅24 mm,高さ29 mm,奥行37 mm である. これは前回製作したものの約1/3 程度の体積であり,上下・左右方向へそれぞれ± 30 deg 駆動することができる.

3. 駆動試験

本試験は、インフォームドコンセントを実施 した健常者2名とし、眼球運動をした際の眼電 位を測定した.なお、電極には3M社製のRed-DatTM2269TPを用いた.はじめに、中心・左・ 右の順に視線移動した際の眼電位を測定し、眼

Fig. 7: 3D プリンタで作成した眼球運動機構 Eye movement mechanism created using a 3D printer

球運動装置を駆動させた.なお,試験は,視線 ガイドから 86.6 cm の位置に座り,50 cm 間隔 のマーカーに視線を移動させることで行った.

Fig. 8に実際の視線と眼球運動機構の方向の 比較を,また,Fig. 9に眼電図と出力角度の比 較を示す.Fig. 8より,眼球運動装置が実際の視 線の方向を向いている様子が確認できる.また,

(a) 右

(b) 正面

Fig. 9: 眼電図と出力角度の比較 Comparison of electrooculogram and output angle

Fig. 9より,眼電位の上昇に伴いサーボモータ の角度も上昇していることがわかる.なお,波 形に多少のずれが見られるが,実際の駆動では 気にならず,遅れもほぼなかった.また,今回 図として右,正面,左,正面を繰り返す眼球運 動による結果を示したが,左から右へ滑らかに 動かす際も眼球運動と差のない駆動信号を出力 できたことを確認している.

しかし,2.1 節で説明したドリフトに関する ハイパスフィルタの影響も出力角度に大きく影 響することがあったので,フィルタについては 再検討する必要がある.

4. 結言

本研究では,健側と同期した眼球運動機能を 有する眼窩エピテーゼを開発するため,眼電図 法による検出ならびに小型眼球運動機構を製作 し,試験を行った結果,良好な結果が得られた.

今後の計画として,眼球運動駆動装置のさら なる小型化並びに上下・左右の眼電図の分離等 の検討を行い,より現実的な眼窩エピテーゼの 開発を目指す.

参考文献

- 松浦正朗、山本勝己、椋本裕行、加倉加恵、城戸 寛史:まばたきするエピテーゼの開発、福岡歯 科大学学会雑誌、36巻、1号、pp.31-32、2010.
- 2)本田雅規,新美敦,野阪泰弘,上田実,柏田耕志,福本一朗:オッセオインテグレーテッドイン プラントを維持源とした能動眼瞼付きエピテー ゼの1例,日本口腔外科学会雑誌,42巻,4号, pp.454-456,1996.
- 3) Chaoqun Xiang, Tao Yun, Zhiwei Li, Xingyu Lu, Chi Yang, Jing Li, Chunfeng Wang, Yisheng Guan: Humanoid robot eyeballs driven by bubble artificial muscles, Sensors and Actuators A: Physical, Vol. 378, No. 1, 2024.
- 4) 野々宮由美香,高橋日向子,田中清志,南斉俊 佑,星崎みどり,福田雅幸,長縄明大:瞬き・眼 球運動を実現する眼窩エピテーゼの開発,計測 自動制御学会東北支部 第 346 回研究集会 資料 番号 346-9, 2023.

- 5) 小野弓絵: 非侵襲生体信号の処理と解析 IV -筋電図・眼電図の計測, 処理と解析, システム/ 制御/情報, 62巻, 8号, pp.337-342, 2018.
- 6) 大矢哲也、山下和彦、小山裕徳、川澄正史:眼電 図を用いた随意性瞬目によるスイッチ操作の研 究,生体医工学、46巻、2号、pp.254-260、2008.
- 7) 崔明根,坂本大介,小野哲雄:バーチャルリア リティにおける極端な視線角度を用いた視線入 力手法の検討,情報処理学会インタラクション, INT22001, 2022.