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A Simple Modification of Fisher Discriminant Analysis Method for Fault Diagnosis
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Abstract– This paper concerns about the application of the Fisher discriminant analysis(FDA) method to diagnose root
causes of faults from process time series. A simple modification of the FDA method was developed so as to enhance the
accuracy of the diagnosis, which uses the absolute values of the residuals in the calculation of the scatter matrices. The
method was applied to a continuous stirred tank reactor(CSTR) and compared with the usual FDA method. The result
shows excellant improvement in the accuracy of diagnosis for several cases.
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1 Introduction
Fault detection and diagnosis plays an important part in

process engineering. The methods of fault detection and
diagnosis can be categorised into three classes: quantita-
tive model-based methods, qualitative model-based meth-
ods and process history based methods [1][2][3]. Quanti-
tative model-based methods are the methods that developa
priori domain knowledge from a fundamental understand-
ing of the process in terms of mathematical functional re-
lationships between the inputs and outputs of the system.
Qualitative model-based method requires qualitative func-
tional relationships from past experience with the process
to express thea priori knowledge. Process history based
methods create knowledge of a diagnostic system by fea-
ture extraction processes based on the process history data.

Fisher discriminant analysis (FDA) was originally de-
veloped for pattern classification, and soon was applied to
pattern recognition problems [4]. The FDA can project the
multi-dimensional patterns to one-dimensional ones with
the maximum ratio of between-class scatter to within-class
scatter, and was used as a data-driven method for fault di-
agnosis [5]. Chianget al [6] applied the FDA to the fault
diagnosis of the Tennessee Eastman chemical plant simu-
lator, and showed the FDA has superior diagnosis accuracy
than the well known PLS or PCA.

In this work, we propose a simple modification of FDA
method to improve the accuracy of fault diagnosis. The
proposed method uses the absolute values of the residuals
in the calculation of the scatter matrices. We named this
method as the absolute-value-based FDA (AFDA). The
method is demonstrated on a continuous stirred tank reac-
tor(CSTR). The fault diagnosis results are compared with
the result of usual FDA.

2 Fisher Discriminant Analysis
The FDA method is one of the promising methods to

diagnose a root cause of a fault. It shows an optimal
one-dimensional mapping to maximize the separability of
given data classes in one-dimensional subspace. It de-
cides the optimal projection vector which maximizes the
between-class scatter matrix while minimizing the within-
class scatter matrix.

Let X ∈ <n×m be a set ofn samplesx ∈ <m and
include two subsetsX1 andX2, each of which contains
n1 andn2 rows ofX corresponding to the samples from
class1 and class2 respectively. Let̄xi be the mean of
samples for classi(i = 1, 2)

x̄i =
1
ni

∑

x∈Xi

x (1)

then

Sw =
1
2

2∑
xi∈Xi
Xi=1

1
ni

(xi − x̄i)(xi − x̄i)T (2)

is the within-class scatter matrix, and

Sb = (x̄1 − x̄2)(x̄1 − x̄2)T (3)

is the between-class scatter matrix.
In terms ofSb andSw, the Fisher criterion function is

defined as

J(w) =
wT Sbw

wT Sww
(4)

wherew is a projection direction, and the vectorw that
maximizesJ(w) must satisfy

Sbw = λSww (5)

for some constantλ, which is a generalized eigenvalue
problem. IfSw is nonsingular, Eq.(5) can be rewritten as

S−1
w Sbw = λw (6)

which is a conventional eigenvalue problem, and the
Fisher optimal discriminant direction is the eigenvectorw
corresponding to the maximal eigenvalue.

3 Absolute Value Based FDA
The AFDA method is different from the FDA in the fol-

lowing two aspects:

• Calculation ofSw

• Calculation ofSb
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We use the absolute values of the right hand side of
Eq.(2) and Eq.(3) to calculateS∗w andS∗b .

S∗w =
1
2

2∑
xi∈Xi
Xi=1

1
ni
|xi − x̄i||xi − x̄i|T (7)

S∗b = |x̄1 − x̄2||x̄1 − x̄2|T (8)

According to the Fisher criterion function shown in
Eq.(4), we can get the same formula with Eq.(6) denoting
the relation among the new within-class scatter matrixS∗w,
between-class scatter matrixS∗b , eigenvalueλ and eigen-
vectorw if S∗w is nonsingular.

From Eqs.(7), (8) and (6), we can find the optimal dis-
criminant directionw which is the eigenvector correspond-
ing to the maximal eigenvalue, and the variable correlated
to the maximum of absolute value of each element in vec-
tor w is estimated to be the root cause of the fault.

4 Case Study
We applied the AFDA method to fault diagnosis on a

CSTR with temperature control.

4.1 Data preparation

The schematic diagram of the CSTR [7] is shown in Fig.
1. The outlet temperatureT of the reaction mixture was
controlled by regulating the flowrate of the cooling water
Fj . The initial condition for the CSTR simulation is shown
in Table 1, and the setpoint of the temperatureT ∗ is 360K.
Proportional-integeral(PI) algorithm was used to control
the outlet temperatureT .

The following six variables were selected as sample
variables :

T : outlet temperature of the reaction mixture
Tj : outlet temperature of the cooling water
CA : outlet concentration of the reaction mixture
cv : setpoint of the flowrate of cooling water
Fj : flowrate of the cooling water
F : inlet flowrate of the reaction mixture

Zero-mean white noises having0.25% standard devia-
tion were added toF andFj .

The following two faults were considered:
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Fig. 1: Schematic diagram of the CSTR

F : leakage of0.01m3/min in reactant inlet;

Fj : leakage of0.01m3/min in coolant inlet;

For both faults, ten data sets including 100 normal sam-
ples and 50 abnormal samples were generated by ten sim-
ulation runs with different random seeds of white noise.
Typical examples of the generated data are shown in Fig.
2.

Eight combinations of sample variables were investi-
gated to evaluate the effect of selection of the variables
Tj , CA andcv for each method. To evaluate the effect of
the number of fault samples, five data sets with different
numbers of abnormal samples were evaluated.

The result of the fault diagnosis is summarized in Table
2 based on the accuracy of the correct recognition(%). Se-
rial numbers in the first column of the table indicate the
eight combinations of sample variables as shown in the
second column. Numbers in the third column correspond
to the fault of leakage in reactant inlet (I) and the fault of
leakage in coolant inlet (II). The elements in the column
of root cause are the variables diagnosed as the root cause
of the fault I or II. The numbers 30, 35, 40, 45 and 50 in
the top of the table are the numbers of abnormal samples
in each data set. The numbers in FDA and AFDA columns
indicate the numbers of identified fault in ten simulations.
The last two columns summarize the accuracy of the fault
diagnosis for each method based on the result of all the
simulations.

4.2 Leakage of inlet coolant

The controller changes the value ofcv based on the mea-
sured value ofFj . In case of leakage of inlet coolant flow,
the controller will give largercv than in the normal op-
eration to compensateT to its set point. As the result,
relationship betweencv andFj will be different between
leakage of inlet coolant flow and normal operation.

For this fault, Table 2 shows that the accuracy of the
detection of the AFDA is completely identical to that of
the usual FDA for all the combination of sample variables.
Moreover, estimated root causes of these two methods are
also the same in the ten simulations no matter which vari-
able combination or which abnormal dataset is used.

As the result, we conclude that the two methods have
the same performance for the diagnosis of the fault of the
leakage of inlet coolant flow.

Table 1: Initial condition for the CSTR simulation

Variable Value Unit
F 0.0524 m3/min
T0 294.4 K

CA0 8.24 kmol/m3

Fj 0.099 m3/min
Tj0 294.4 K
T 340 K
Tj 340 K
CA 3.0 kmol/m3
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Fig. 2: Examples of generated data sets. (Data between the sample 1 and 100 are normal samples; Data between 101 and
150 are samples with a leakage of inlet reactant; Data between 151 and 200 are samples with a leakage of inlet coolant.)

Table 2: Summary of the diagnosis
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4.3 Leakage of inlet reactant

The value ofFj changes withcv in the normal opera-
tion. In case of leakage of inlet reactant flow, the controller
will give smallercv than in the normal operation to keep
T to its set point, andFj will become smaller with the
change ofcv. As the result, relationship betweencv and
Fj will be the same between leakage of inlet reactant flow
and normal operation. At the same time,Tj will become
larger with the deduction ofFj , andCA smaller with the
deduction ofF .

For this fault, Table 2 shows that the accuracy of the
detection of the AFDA is better than that of the usual FDA
in most cases, although the accuracy of these two methods
is identical for the case 2.

For the comparison of these two methods, we divide the
variable combinations into the following groups:

Related toTj

case 1 & case 2

case 3 & case 4

case 5 & case 6

case 7 & case 8

Related toCA

case 1 & case 3

case 2 & case 4

case 5 & case 7

case 6 & case 8

Related tocv

case 1 & case 5

case 2 & case 6

case 3 & case 7

case 4 & case 8

From the comparison of the diagnosis result, we con-
clude the following two differences between the two meth-
ods:

1. The AFDA method always have high accuracy in the
diagnosis of root cause, and the accuracy does not
change by the difference of variable combinations.
However, the accuracy of the usual FDA method is
obviously decreased when bothcv and CA are in-
cluded in the variable combination. These results
show that the selection of sample variables for fault
diagnosis requires much attention in the usual FDA
than the AFDA.

2. The estimated root causes of these two methods are
not the same. The AFDA method diagnosesF andFj

as the root causes in all the cases. But the usual FDA
method diagnosesF , Fj and cv as the root causes
whencv is used for fault diagnosis.

5 Conclusions
A simple modification of the FDA method was proposed

for improving the accuracy of fault diagnosis of process
plant. The method uses the absolute values of residuals
rather than the residuals of sample variables in the calcu-
lation of the between-class scatter matrix and within-class
scatter matrix. The case study of a CSTR showed that the
AFDA method is identical or superior than the usual FDA
method for the isolation of faults.
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