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1.  Introduction 

Brain tumor accounts for 66.5% of brain 

and malignant central nervous system 

tumors, and there has been no significant 

advance in prevention, early detection, and 

treatment of brain tumor over the past four 

decades 1). Tan et al. reported that despite 

improvements in short-term survival for 

glioblastoma patients, the five-year survival 

rate remains just 5.8% 2). 

 Brain tumor segmentation is critical in 

clinical applications such as surgical 

planning, image-guided interventions, 

tumor monitoring, and radiation therapy 3). 

However, reading scans is time-consuming 

for doctors due to the many MRI slices, the 

need to interpret multiple modalities, and 

the irregular shapes and heterogeneity of 

brain tumors. Therefore, deep learning 

methods have been introduced to 

automatically segment tumor regions for 

efficient and accurate analysis. 

 Previous studies predominantly utilized 

deep learning methods for brain tumor 

segmentation in MRIs, generally achieving 

good results 4,
 

5). However, segmentation 

performance on the whole tumor region 

consistently outperforms that of the 

enhancing tumor and tumor core, with Dice 

coefficient 3–10% higher. Furthermore, 

Bjoern et al. revealed that different 

approaches excel in different tumor sub-

regions, no single approach consistently 

ranks the best across all subregions 6). 

Most studies used MRI data but 

overlooked differences among MRI 

modalities. As shown in Fig. 1, the same 

tumor tissue appears differently across 

modalities, with some features prominent in
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Fig. 1 An example of multimodal MRI for brain 

tumor: a. T1c modality, b. T1 modality, c. T2 

modality, d. FLAIR modality. 

one but less distinguishable in others. 

The purpose of this study is to analyze the 

impact of various combinations of MRI 

modalities on segmentation performance 

across different tumor subregions. By 

testing different modality combinations, we 

can observe how modalities interact and 

affect segmentation outcomes, helping to 

identify the most effective combinations for 

more accurate segmentation.  

 

2.  Method 

2.1 Dataset 

The dataset used in this research comes 

from BraTS2023 7, 8), which was manually 

divided into training set (1000 cases), 

validation set (200 cases), and test set (50 

cases). This dataset contains four MRI 

modalities for each patient: T1, T1c, T2, and 

FLAIR. Each provides a distinctive contrast 

of the brain structure and pathology.  

In addition, this dataset provides three 

annotations: enhancing tumor (ET), 

peritumoral edematous/invaded tissue (ED), 

and necrotic tumor core (NCR), which are 

annotated across all image data. 

2.2 Models 

Three extended models of U-Net 9):  3D 

U-Net 10), Attention U-Net 11), and UNETR 
5) were trained from scratch and evaluated in 

this study.  

 3D U-Net is an extension of the original 

U-Net architecture. It uses 3D convolutions 

to capture spatial relationships in all three 

dimensions, leading to more accurate 

segmentation results for 3D medical data.  

Attention U-Net incorporates attention 

blocks [] during the upsampling phase of the 

3D U-Net, allowing the upsampling stage to 

focus on important spatial features. 

Attention gate consistently improves the 

prediction performance of U-Net while 

preserving computational efficiency. 

UNETR follows a U-shaped design for its 

encoder-decoder architecture. It uses a 

Transformer 12) as the encoder to capture 

global features, making it well-suited for 

segmenting complex 3D MRI data. 

 

2.3 Experimental setting 

In this study, we utilized multi-modal 

MRI-based 3D deep learning models for 

brain tumor segmentation. The input 

consists of different combinations of MRI 

modalities (T1, T1c, T2, and FLAIR), which 

are stacked into a multi-channel 3D tensor 

and fed into the model. As shown in Fig. 2 

the model will output the prediction of the 

three tumor regions ET, ED, and NCT.  

 

Fig. 2 Example of input and output of  the 

models 

As pre-processing, the T1c, T1, T2, and 

FLAIR data were normalized and resized to 

160×160×128, corresponding to height (H), 
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width , and depth. Data augmentation 

included random rotations, flips, and 

Gaussian noise to enhance variability and 

model generalization. 

The optimization strategies of models 

were experimentally determined. For the 3D 

U-Net and Attention U-Net, Stochastic 

Gradient Descent (SGD) optimizer was 

utilized with a momentum of 0.9, an initial 

learning rate of 1 × 10−3 , and a weight 

decay of 5 × 10−4 . The UNETR model 

employed the Adam optimizer with an 

initial learning rate of 1 × 10−3  and a 

weight decay of 1 × 10−5 . To further 

enhance the training process, all models 

were implemented with a cosine annealing 

learning rate scheduler, which adjusted the 

learning rate from a specified base value of 

2 × 10−3 to a final minimum value of 

1 × 10−3. The duration of warmup epochs 

10, and a starting warmup value of 5 ×

10−4 . To ensure reproducibility, a fixed 

random seed was set for all experiments. 

The loss function combined cross-

entropy loss ℒ𝒞ℰ  and soft Dice loss ℒ𝒟ℒ  to 

improve medical image segmentation. ℒ𝒞ℰ 

focuses on pixel-wise classification 

accuracy: 

ℒ𝒞ℰ(𝑦, �̂�) = − ∑ 𝑤𝑖

𝑁

𝑖=1

⋅ 𝑦𝑖 ⋅ 𝑙𝑜 𝑔(𝑦�̂�) (1) 

ℒ𝒟ℒ  focuses on the overlap between 

predictions and annotations: 

ℒ𝒟ℒ = 1 −
2 ∑ 𝑦�̂�

𝑁
𝑖=1 ⋅ 𝑦𝑖

∑ 𝑦�̂�
𝑁
𝑖=1 + ∑ 𝑦𝑖

𝑁
𝑖=1 + 𝜖

(2) 

where 𝑦𝑖  and 𝑦�̂�  represent the predictions 

and annotations, respectively. Besides, 𝑤𝑖 is 

the pixel weight, 𝑁  denotes the number of 

pixels and ϵ  is a very small constant, 

typically used to prevent division by zero.The 

total loss ℒ𝓉ℴ𝓉𝒶ℓ is a weighted combination 

of both losses, where 𝛼  represents the 

weighting factor. 

ℒ𝓉ℴ𝓉𝒶ℓ = (1 − 𝛼) ⋅ ℒ𝒞ℰ + 𝛼 ⋅ ℒ𝒟ℒ (3) 

 

3.  Result 

As shown in Fig. 3, the blue, green, and 

red represent enhancing tumor, peritumoral 

edematous/invaded tissue, and necrotic 

tumor core, respectively. 

Models were evaluated by their 

performance on segmenting each subregion. 

According to the official dataset, enhancing 

tumor (ET) refers to the actively enhancing 

part of the tumor; tumor core (TC = ET + 

NRC) includes both the enhancing tumor 

and the necrotic core of the tumor; and 

whole tumor (WT= NCR + ED + ET) 

encompasses the entire tumor region.  

Dice similarity metric was used to 

measure the overlap between the ground 

truth and the segmentation result:  

𝐷𝑖𝑐𝑒 =
2||𝑋 ∩ 𝑌||

||𝑋|| + ||𝑌||
(4) 

where 𝑋  is the prediction result of the 

models, and 𝑌 is the ground truth. 

Table 1 presents the segmentation results 

for both single-modality and multi-modality 

combinations. In the single-modality 

experiments, only the T1c modality 

effectively guided the model in segmenting 

the ET and TC, while the other three 

modalities primarily contributed to the 

segmentation of the WT. In the multi-

modality experiments, removing T1c caused 

a significant decrease in the Dice scores of 

all three models in both ET and TC. In 

contrast, removing any single modality 

except T1c had a relatively minor impact on 

segmentation performance. It is difficult to 

distinguish which modality, FLAIR or T2, 

contributes more to WT segmentation in the 

single-modality experiments. However, in 

the experiments where one modality was 
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missing, a clearer trend can be observed. 

When FLAIR is missing, the WT 

segmentation performance of all three 

models drops more significantly, which can 

show that it has more contribution on 

segmenting WT region. 

The best segmentation performance was 

achieved when using all four modalities, as 

showcased in Fig.3. 
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Fig. 3 An example of ground truth and segmentation results: a. T1c, b. T1, c. FLAIR, d. T2, e. ground 

truth, f. 3D U-Net, g. Attention U-Net, h. UNETR. (Segmentation annotation: the blue, green, and red 

represent enhancing tumor, peritumoral edematous/invaded tissue, and necrotic tumor core, respectively.) 

 

Table 1 Dice score with different combinations of modalities 

Modalities ET TC WT 

T1c T1 F T2 3D U-Net Att U-Net UNERT 3D U-Net Att U-Net UNERT 3D U-Net Att U-Net UNERT 

● ○ ○ ○ 0.729 0.694 0.553 0.746 0.714 0.572 0.646 0.659 0.487 

○ ● ○ ○ 0.299 0.206 0.007 0.499 0.353 0.054 0.614 0.524 0.350 

○ ○ ● ○ 0.065 0.162 0.226 0.085 0.261 0.394 0.676 0.731 0.783 

○ ○ ○ ● 0.288 0.267 0.147 0.478 0.432 0.269 0.730 0.630 0.637 

● ● ● ○ 0.743 0.746 0.727 0.768 0.760 0.725 0.824 0.856 0.841 

● ● ○ ● 0.743 0.716 0.644 0.744 0.714 0.597 0.809 0.748 0.700 

● ○ ● ● 0.757 0.712 0.717 0.773 0.750 0.694 0.844 0.871 0.831 

○ ● ● ● 0.300 0.307 0.151 0.489 0.489 0.253 0.848 0.860 0.817 

● ● ● ● 0.751 0.773 0.765 0.767 0.784 0.774 0.856 0.875 0.892 

*   ET is represented by blue, TC is represented by both blue and red, and WT is represented by all three 

colors. 
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4. Discussion and Conclusion 

In this study, we analyzed the 

segmentation performance of three 

models—3D U-Net, Attention U-Net, and 

UNETR—on different combinations of 

MRI modalities (T1, T1c, T2, FLAIR) 

across brain tumor subregions. Based on the 

results, we had the followed findings: Firstly, 

as illustrated in Fig.3, the edges of ET and 

TC are distinctly visible in the T1c modality, 

which corresponds to that segmentation 

performance for ET and TC is optimal when 

the T1c modality is included in the input 

data. Meanwhile, FLAIR and T2 modalities 

perform best in the segmentation of the WT 

region. However, based on the results in 

Table 1, the specific contribution of each 

modality appears to vary depending on the 

model and input data. Models that leverage 

attention mechanisms, such as Attention U-

Net and UNETR, seems more effective at 

extracting WT information from the T2 

modality.  

The limitations of this study include that 

all three models fuse the input modalities at 

an early stage, without comparing 

alternative fusion strategies. Additionally, 

due to time and resource constraints, 

experiments using only two modalities as 

input were not conducted. Future work will 

focus on completing experiments with two-

modality inputs and testing models that 

incorporate different fusion strategies. 

In conclusion, this study offers a 

comprehensive analysis of the effects of 

different MRI modality combinations on 

tumor subregion segmentation performance. 

We identified the most influential 

modalities for each subregion: T1c for ET 

and TC, and T2, FLAIR for WT. 

Complementary modality combinations 

were shown to effectively improve 

segmentation accuracy. This research lays 

the groundwork for future studies on multi-

modal MRI feature fusion, emphasizing the 

importance of both modality selection and 

model choice. 
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